Ordovician
Metamorphism of the Sierras Pampeanas, Sistema de Famatina and Cordillera
Oriental, Northwestern
Argentina
Juana
N. ROSSI1, Arne P. WILLNER2
and Alejandro J. TOSELLI1
1 INSUGEO, Miguel Lillo 205, Tucuman, 4000, Argentina. E-mail atoselli@cpsarg.com
2 Institut für Geologie, Mineralogie und Geophysik. Ruhr-Univ. Bochum. Germany. E-mail: arne.willner@ruhr-uni-bochum.de
Abstract:
ORDOVICIAN METAMORPHISM OF THE SIERRAS
PAMPEANAS,
SISTEMA DE FAMATINA
AND CORDILLERA ORIENTAL,
NORTHWESTERN ARGENTINA.
In NW Argentina, the composition, age and relationships
of metamorphic country rock with granitoids allow the characterization of four
metamorphic belts: 1) The Eastern Belt, with predominantly Pampean metamorphism
(Upper Precambrian- Lower Cambrian) to the east, and Famatinian (Ordovician) to
the west in deep tectono-metamorphic levels. 2) The Central Belt, with
prevalence of ordovician granitoids intruded in supracrustal turbidites of
Pampean age, with Famatinian thermal metamorphism overlapping. 3) The Sistema de
Famatina Belt is divided in three zones. The eastern and intermediate zones,
with granitoids intruded in metaturbidites with low-metamorphic grade are
assumed as equivalent to the Puncoviscana Formation, with overlapping Ordovician
metamorphism. In the western zone, the granitoids intruded in a basement of
high-metamorphic grade, considered with age Grenville/Sunsas. 4) The Western
Belt is composed by high grade metamorphic rocks, and it is considered an
allochthonous terrain, with partially Proterozoic ages, suffering Ordovician
metamorphism. This event is interpreted as the collision of an
allochthonous/parauchtothonous terrain against to the western border of
Gondwana.
Resumen:
METAMORFISMO
ORDOVÍCICO DE LAS SIERRAS
PAMPEANAS,
SISTEMA DE FAMATINA
Y CORDILLERA
ORIENTAL,
NOROESTE DE ARGENTINA.
Cuatro cinturones
metamórficos fueron propuestos para describir el metamorfismo Ordovícico
Famatiniano en el NW de Argentina:1) El Cinturón Oriental, cuyo metamorfismo es
mayormente Pampeano (Precámbrico superior- Cámbrico inferior) al Este y
Famatiniano en los niveles tectonometamórficos más profundos al Oeste. 2) El
Cinturón Central, con predominio de granitoides ordovícicos intruídos en
turbiditas supracorticales, de metamorfismo Pampeano, con sobreimposición de
metamorfismo térmico Famatiniano. 3) El Cinturón del Sistema de Famatina, con
las fajas central y oriental con granitoides intruídos en meturbiditas de bajo
grado metamórficos asumidas como equivalentes a la Formación Puncoviscana, con
metamorfismo ordovícico sobreimpuesto y la faja occidental de granitoides intruídos
en basamento de alto grado metamórfico y edades consideradas de
Grenville/Sunsas. 4) El Cinturón Occidental, compuesto por rocas metamórficas
de alto grado, es considerado un terreno alóctono, de edades en parte
proterozoicas, que tienen sobreimpuesto metamorfismo ordovícico, evento
interpretado como la colisión de un terreno alóctono/parautóctono contra el
borde occidental de Gondwana.
Keywords:
Northwest Argentina. Metamorphic belts. Pampean metamorphism. Famatinian
metamorphism.
Palabras
clave: Noroeste
Argentina. Cinturón metamórfico. Metamorfismo Pampeano. Metamorfismo Famatiniano.
Introduction
In
the Northwest of Argentina, the Ordovician metamorphism (495 Ma to 443 Ma),
widely overprint the basement rocks from Proterozoic-Neoproterozoic up to
Cambrian ages of the Sierras Pampeanas. The oldest basement of Grenville/Sunsas
age (1100-1000 Ma) is up to date poorly constrained, and it was recognized in
the Sierra Pié Palo, which belongs to the Sierras Pampeanas Occidentales,
(Fig.1) and considered by some workers an allochthonous with Laurentian
affinity, and for others a Gondwanic parautochthonous terrain that would be
collided against the southwestern Gondwana in Ordovician up to Devonian times.
The remaining Sierras Pampeanas Occidentales: Valle Fértil-La Huerta, Maz and
Umango ranges, were all also considered as exotic terrane to Gondwana, but
lately, the different ages of magmatic and metamorphic events in the Sierra de
Umango basement (Grenvillian, Cambrian, Ordovician and Devonian) would been
interpreted as juxtaposed sheets of allochthonous and autochthonous Gondwanic
together (Sato et al., this volume).
In
easterly of northwest Argentina, the oldest autochthonous Gondwanic terrain is
the Puncoviscana Formation and equivalents whose metamorphic ages of 580–540
Ma, is known as the Pampean metamorphism.
The
Ordovician metamorphism (490-470 Ma), overprint the Pampean metamorphism in
those supracrustal levels intruded by the huge Ordovician batholiths of the
Sistema de Famatina and those of the Batholithic Central Zone encompassing the
Sierras de Zapata, Vínquis, Belén-Capillitas, Velasco-Mazán, and Los
Llanos-Chepes-Ulapes (Fig. 1).
To
the east of the Sierras Pampeanas, the outcrop of basement in the Quilmes,
Cumbres Calchaquíes, Aconquija, Ambato, Ancasti ranges, Cordillera Oriental and
Salta and Tucumán ranges.
The
metamorphic rocks areally predominate on the intrusive rocks and show different
metamorphic levels, with different deformation episodes and polimetamorphism,
which were isotopic dated in areas of Salta, Tucumán and Ancasti (Miller et
al., 1994).
For
a better understanding the distribution of the Ordovician metamorphism in
northwestern Argentina we will use the division of the basement in the
igneous-metamorphic belts proposed by Toselli et al. (2001), see Table 1.
Eastern
belt
In
the Sierra de Cachi (Cordillera Oriental) crops out the oldest basement, known
as the Puncoviscana Formation, (Zone I of Willner, 1990) constituted by
supracrustal turbidites whose earliest U-Pb age of sedimentation was obtained in
detrital zircons of silicic volcanic provenance, averaged in 550 Ma (Lork et
al., 1990). Open to tight subvertical chevron folds characterize F1;
a slaty cleavage S1 is only found in the
pelitic layers, with a synkinematic metamorphism of very low grade (Willner,
1990). Towards to the west in the Sierra de Cachi, a series of tonalite –
trondhjemite to granodiorite, small plutons of mainly Ordovician age, intruded
in the Puncoviscana Formation (Galliski et al., 1990). A low P/T ratio
metamorphism, has developed and increased in short distance from the
biotite-cordierite zone to the sillimanite-cordierite- potassic feldspar zone
close to the plutons in a nearly isobaric P-T path (Rossi de Toselli et al.,
1992). The 481 to 462 Ma U-Pb monazite
ages
of the plutons (Lork et al., 1989) are interpreted as the oldest ages of
the thermal Ordovician metamorphism of this area. The granitoids and their
thermal aureoles were strongly sheared, obtaining a penetrative subvertical
foliation S2 and rotation of the cordierite
metablasts (Willner, 1990).
Toward the south, in the most eastern zone of this belt, the Puncoviscana Formation continue in the sierras of southeast Salta, northeast of Tucumán, and west of Tucumán city (Zone II of Willner, 1990). This zone is characterized by a penetrative tectonic banding in metapsammitic rocks as an axial plane cleavage S1 of tight to subvertical F1 folds. Strike is very constant, NE-SW in the Sierra de San Javier and eastwards, southern in the Cumbres Calchaquíes and to the south. Coaxial F2 drag folds of dm to m scale are also penetrative. A gently dipping S2 occurs as crenulation cleavage
in
metapelites and as fracture cleavage in metapsammites. This progressive change
in the mesoscopic tectonic fabric from zone I to II, is also accompanied by an
increase in synkinematic metamorphism from very low, to low grade. Chlorite and
white mica have grown parallel to the cleavage planes.
There
is a strong pressure solution of quartz and also of plagioclase between the mica
festoons essentially in the dark micaceous bands. Dissolved quartz is partially
concentrated in pressure solution shadows, partially it leaves the rocks to form
quartz segregations parallel to S1
or
oblique veins.
The
area that exhibiting the strongest shear strain, is located in the Sierra del
Nogalito. The mesoscopic fabric is characterized by monotonous subhorizontal
planes with extremely harmonic intrafoliaceous folds of cm to dm scale. Banding
is very thin; microscopically one observes extreme pressure solution of quartz
and feldspar clasts, strong polygonization as well as synkinematic growth of
biotite, which are indicate an increase of temperature in this area, and
continued in a diaphtoretic phase with chloritization. Adams et al.,
(1990) obtained K/Ar whole rock ages of 535- 540 Ma, for the metamorphism, in
the less deformed and very low metamorphic grade rocks of southeast Salta; and
560-570 Ma in the more deformed (higher P/T) rocks in the San Javier and
northeast of Tucumán ranges. Later Ordovician events were not detected in these
regions.
In
Cumbres Calchaquíes, at the Tafí del Valle latitude, crop out deeper
tectono-metamorphic levels (Zone III of Willner, 1990): during F1
a transposition structure was developed and a second
static metamorphism M2, post F2
began,
in which the metapsammites and metapelites underwent a gradation to banded
schists characteristic of the Cumbres Calchaquíes, and the Aconquija and
Ancasti ranges. The F1 fold closures disappear by
transposition of the banding subparallel to bedding up to an angle of 15º as a
result of extreme flattening and gliding on the banding planes.
This
effect is more pronounced by stronger pressure solution. The regional
metamorphism is characterized by the appearances of isogrades of synkinematic
biotite and static growth of garnet. It follows a deformation D2,
with dominant subvertical NW-SE folds and also more local horizontal drag folds,
and a M2 metamorphism (Zone IV) with the
static growth of staurolite, biotite and andalusite porphyroblasts (Toselli and
Rossi de Toselli, 1973, 1984; Willner, 1990).
The
M1 and M2
metamorphic
events, were dated by Rb-Sr (Bachmann and Grauert 1987a,b) who used thin whole
rocks slabs and garnet, that provided two metamorphic events. The oldest,
between 580 and 540 Ma, in which the main banding was formed by metamorphic
differentiation and almandine crystallization took place. At 470 to 435 Ma, the
rocks were again metamorphosed and the already existing almandine in samples
from higher metamorphic terrain re-equilibrated their 87Sr/86Sr
ratios with that of the whole-rock systems. The Ordovician oldest metamorphic
age of 470 Ma, is supported by a whole rock Rb/Sr isochron in the Loma Pelada
granite in Tafí del Valle, obtained by Sales de López et al., (1997).
In
the Sierra de Ancasti predominate banded schists and gneisses of middle
metamorphic grade known as the Ancasti Formation. On the western edge and
partially in the south of the sierra, the banded schists of the Ancasti
Formation pass to migmatic gneisses of the Portezuelo Formation.
This
area of high metamorphic grade and migmatites, extend further to the west in the
sierras of Graciana, Colorado, Fariñango and eastern edge of the Sierra de
Ambato (Toselli, 1983, 1984).
The
conspicuous banding is the dominant element of deformation. It can be
interpreted as a second schistosity, which originated by extreme transposition
of older structures into a N-S direction.
The
characteristic banding is deformed by numerous closed minor folds of N-S strike
and few megastructures, which are the effects of a third deformational phase. A
fourth deformational phase is documented by a weak schistosity as well as by
open NW-SE-trending minor folds. The fifth deformational phase is a wide spread
cataclasis affecting all rocks to some extent, which culminates in some narrow
zones with mylonitization and subsequent cataclasite formation with
pseudotachylytes. Under a sixth deformational phase all faults and differential
uplift stages are summarized, which already started in the Carboniferous and
culminated in the older Quaternary giving the actual shape to the sierra.
Parallel
to the deformational phases a number of phases of metamorphic overprint can be
distinguished. No mineral relics were found that are related to a supposed first
phase. The second phase of metamorphism probably overprinted the whole area in
equal intensity in greenschists facies, but did not reach the range of garnet.
The third metamorphic phase was by far the strongest one (5 – 5.8 Kbar, 500º
- 670ºC) reaching the anatexis on the western edge of the sierra. Typical
isogrades run N – S; Willner (1983b) recognizes three prograde metamorphic
zones: the almandine zone; the cordierite, staurolite and andalusite zone; and a
cordierite, potassium feldspar, sillimanite, associated with migmatization zone.
A
fourth metamorphic phase led to recrystallization of micas and growth of
chlorites. A fifth metamorphism is entirely dynamic coming up to the formation
of pseudotachylytes locally.
Summarizing,
the metamorphism was more controlled by temperature than by pressure.
The
absolute ages data can clearly be correlated with the relative dating of the
metamorphic deformational and intrusive events. The oldest data derived from an
uncertain Rb-Sr isochrone of metamorphic rocks with values of 535.7±42.4 Ma for
the metamorphism M1-M2
which
produced the banding of the schists (Knüver, 1983). They document Middle to
Upper Cambrian metamorphic events, which can be correlated with the
deformational phases D1 and
D2.
An homogenization age of 472±26 Ma is quite certain and document the climax of
M3 metamorphism and migmatization
after the third deformational phase (Knüver, 1983). Numerous biotite ages (K-Ar
and Rb-Sr) between 400 and 420 Ma in metamorphic and granitic rocks, document
the end of the fourth metamorphic phase. All pre-Carboniferous granites were
weakly affected by the fourth deformational phase. It can be clearly seen that
deformation, metamorphism and magmatism in the Sierra de Ancasti are of a
Paleozoic age with a climax in the Ordovician.
Other
early Ordovician regional tectonic events are so called megastructures. The Tafí
Megafracture defined by Baldis et al. (1975), is developed in a NNW
direction and forms the boundary between the Cumbres Calchaquíes in the
northeast and the Sierra de Aconquija in the southwest. It continues in the
Sierra de Quilmes to the west of Santa María valley as the Chusca fault. The
Tafí has been an active fracture since early Paleozoic times (Willner, 1990).
Along this lineament, a series of calcalkaline granitoids was emplaced in low-to
medium-grade metamorphic rocks (Toselli et al., 1989).
Another
Megafracture crosses the south of the Sierra de Ancasti (NW-SE). Along this
lineament the granitoid series of La Majada was intruded (Toselli et al.,
1983).
The
eastern and western wedges of the Sierras de Ambato and Aconquija show deeper
tectonicmetamorphic levels respectively, with the gradation from banded schists,
to gneisses and migmatites (González Bonorino, 1951a, b). In the future, when
the knowledge of the tectonic-metamorphic evolution of these regions were
improved and as more isotopic data obtained, the Ordovician metamorphism,
documented in Cumbres Calchaquíes, and in the western center region of the
Sierra de Ancasti, will be regionally more important.
In
the Sierra de Quilmes the outcrops of crystalline basement predominate on the
magmatic intrusions. The basement was lithologic described by Toselli et al. (1978),
but up to day very little is known over its tectonic-metamorphic evolution and
ages. To the south of Colalao del Valle, schists and gneisses with medium
metamorphic grade crop out, while to the NE, between Colalao del Valle and
Cafayate rises up a block from deeper levels (the Chusca Cenozoic fault)
constituted by granulitic gneisses and migmatites (Rossi de Toselli et al.,
1976), Rapela, 1976, Toselli et al., 1978, Rossi et al., 1987)
whose ages are possibly Proterozoic, but the current data of Sm/Nd give
exhumation and/ or cooling ages between 442 to 412 Ma (Becchio et al.,1999;
Lucassen et al., 2000).
The
Cafayate granite (Rapela, 1976) is partially intrusive in this high grade
basement, but the cupola contains roof pendants of schists of supracrustal
levels, which underwent thermal metamorphism, with development of cordierite
megablasts. Rapela et
al. (1982) obtained an Rb/Sr isochrone of 475 Ma. This
granite age also corresponds to the contact metamorphism.
The
Central belt
In
the Central Belt, the granitic batholiths represent more than 80% of the
granitoids outcrops that intruded in metaturbidites of low to medium metamorphic
grade. These geological relationships are characteristic of the Faja Eruptiva
Oriental de la Puna, and the Batholithic Central Zone of the Sierras Pampeanas
(Toselli et al., this volume). The host rocks of most of these granitoids
are scarce and are exposed frequently as roof-pendants. The regional
metamorphism varies from low- to medium grade, but hornfels are frequent as
xenoliths in granites or as roof-pendants. Here will be considered the better
know examples.
In
the Sierra de Velasco, the host rock is exposed in discontinuous outcrops to the
east margin of the sierra. It consists of strong deformed, supracrustal
turbidites, of low metamorphic grade, mainly phyllites, in tectonic contact
relationship with the granites. The host rocks are not yet dated, but they are
compared with the Upper Proterozoic-Lower Cambrian, Puncoviscana Formation.
High
metamorphic grade hornfels, with cordierite-andalusite-sillimanite-potasssium
feldspar paragenesis had been found in three localities; one in the north tip of
the sierra (Rossi of Toselli et al., 1997); another in the southwestern
margin of the sierra, in the Quebrada de la Puerta (Bellos et al., 2002),
and toward the south, in the Bolsón de Paluqui, Coira et al. (1968)
described low grade metamorphic rocks and high grade hornfels. The central part
of the sierra consists of undeformed, mainly porphyritic, medium to coarse
grained, two mica-bearing granitoids. The west margin of the sierra contains
several NNW-trend belts of medium to coarse grain deformed orthogneiss. The UPb
SHRIMP data of 479 and 481.4 Ma from zircon cores in two granitoids, were
obtained by Rapela et al. (1999, 2001).
Many
granitoids in the Sierra de Velasco are variably deformed with development of
NNW-SSE trending shear zones especially the so called “Faja Milonítica
TIPA”, defined by López and Toselli (1993) which spreads further runs for its
western flank, NNW-SSE and other, parallel to its that runs along the Quebrada
de La Rioja-Cerro La Cruz, which are part of the so called. The western block is
formed by a porphyritic orthogneiss, with fabric elements of non coaxial
deformation, with S/C foliations, well developed stretching lineations and
asymmetric porphyroclasts that evidence thrust toward the west as kinematic
indicative (López et al., 1996). They contain microcline megacrysts from
5 to 10 cm, in a plagioclase, microcline, quartz, biotite matrix in higher
proportion that muscovite, garnet, zircon and apatite. In the layers of white
mica, it is developed kyanite and sillimanite. The deformation occurred under
conditions of almandine amphibolite facies (Rossi et al. 1999). This
deformation zone extends toward Antinaco and great part of the southwest of the
mountain.
The
zones of deformation in the Sierra de Velasco cannot be correlated temporarily,
at least, with those of the mountains of Copacabana and Fiambalá for not being
had opposing milonites of sufficiently fine grain, for the reequilibration of
the system Rb/Sr or Sm/Nd closure (Höckenreiner et al., 2001, Söllner et
al., 2001); it is only had the uncertain measured K/Ar that give variable
ages between 460 and 340 Ma; and lately, with an age U-Pb SHRIMP of 481.4 Ma in
zircons cores, interpreted as the crystallization age, and another in the
borders of growth, of 469 Ma interpreted as age of the deformation, determined
in a milonitized cordierite-bearing porphyritic granite (Rapela et al.,
2001). On the other hand, the continuation of the Faja Milonítica TIPA in the
Copacabana and Fiambalá ranges, where they meet milonites with enough fine
grain, it allowed to Höckenreiner et al. (2001), to carry out isotopic
analysis in the shears area. The conventional data U-Pb in zircons they give
ages of 495 Ma, for strongly milonitized granites of the Sierra de Copacabana
that are interpreted as intrusion ages, while data of Sm-Nd in whole rock-
garnet they give values of 420–409 Ma, corresponding to the ages of the
shears. In the Sierra de Fiambalá, three systems of ductile shears are
recognized by Neugebauer (1996) and Neugebauer and Miller (1996), dated by Rb/Sr
in minerals and whole rock, they gave ages among 392±8.7 Ma and 357.3±8.1 Ma
(Söllner et al., 2001) with that the milonitization in the Faja Milonítica
TIPA was developed between the Lower- and Upper- Devonian. It is considered that
the maximum age of deformation for the granitoids of the Sierra de Velasco,
would be of 469 Ma, since there is not other datations of shear zones, but it is
only a punctual data In the Sierra de Capillitas, the relationships between the
cordierite granite and their country rock are visible in the summit of the Cerro
Negro, called this way by the color of the hornfels that they form partitions
and roof pendants. The felsic phases of the granite is in contact with their
country rock in the Quebrada de Villavil. Along the same one it appears the
basement constituted by biotitemuscovite schists, partly gneissic, with low- to
medium metamorphic grade, whose tectonometamorphic evolution, so much local as
regional, it is not still known. The age of crystallization of the porphyritic
granite, was determined by Pankhurst et al. (2000) in 469.6 Ma.
The
frequency with which appear similar banded schists in pelitic-psammitic rocks,
in Cumbres Calchaquíes, Ancasti and Aconquija it makes reasonable to assume
that the one banded would have been developed during the Pampean metamorphism
and the thermal metamorphism overlapping there would be been, in the Famatinian
cycle.
In
the sierras of Los Llanos-Malanzán-Chepes, the metamorphic basement is formed
by supracrustals metaturbidites of Olta Formation (Caminos, 1979), and was
described by Dahlquist and Baldo (1996) in a profile E-W through the Sierra de
Chepes. This authors recognize a progressive metamorphism that culminates in the
highest sector in the mountain, being reflected in the textural and
mineralogical changes of the rocks that begin as spotted lines, they pass to
schists, and with the increase of the size of the grain to gneisses that show
textures with migmatitic aspect. The authors recognize a relictic schistosity S1
conserved in the biotite and cordierite porphyroblasts,
and another dominant schistosity S2
with
metamorphism M2, in which they distinguish a
progressive zonation with index minerals: 1) biotite zone, 2) cordierite zone,
and 3) andalusite/sillimanite, cordierite, potassium feldspar zone. The maximum
age of the metamorphism M2 of
Dahlquist and Baldo (1996) it was defined by crystallization ages U-Pb SHRIMP,
in zircons in the range of 495–470 Ma, by the igneous Chepes Complex (Sims et
al., 1998). Pankhurst et al. (1998) obtained similar ages.
The
detrital zircons measurations in the Olta Formation, give concentrations among
560-600 Ma, correlated with the Pampean metamorphism of the Puncoviscana
Formation, in the Eastern Belt (Sims et al., 1998). This would be
confirmed by the existence of relictic D1
and
S1, in the porfiroblasts (Dahlquist
and Baldo, 1996). In schists and phyllites of Malanzán, Pankhurst et al. (1998)
they obtained an errorchrone Rb-Sr 513±31 Ma that one cannot interpret as
Cambrian metamorphism affected by the magmatic event.
The
Famatinian belt
This
belt, corresponds to the metamorphites and granites of the Sistema de Famatina
that for its complexity, lithology, lie and geologic relationships, we have
divided it in three zones: Western, Intermediate, and Eastern zones.
The
Western Zone: the Espinal Formation, represented the country rock of the Cerro
Toro and San Agustín plutons; while the Cerro Blanco Granite, doesn’t present
metamorphic country rock, and the group is covered in its biggest part for silts
of the Upper Paleozoic (Cisterna and Toselli, 1996; Cisterna, 2000).
The
tonalite-granodiorite Cerro Toro is a late-tectonic intrusive in the Sierra del
Espinal one to the west, while to the east, by effect of the differential
exhumation during the Carboniferous age, and added then to the Andean tectonic,
it is in structural discontinuity with volcaniclastic sedimentary rocks, of the
Lower-Ordovician (Toselli et al., 1988, Saavedra et al., 1992,
1996.) Here they are very visible remarkable roof-pendants and xenoliths of
country rock of the Espinal Formation (amphibolites, gneisses and migmatites)
that they attain extensions of hundred of meters that were incorporate to the
tonalitic magma and they show different degree of assimilation. The tonalite
crystallization pressure, using the hornblende geobarometer (Hollister et al.,
1987) it was determined in 6 Kbar by Rossi de Toselli et al. (1991). It
doesn’t register here, Ordovician metamorphism.
Rapela
(2000) determined an age U-Pb SHRIMP in zircon, of 529 Ma for a migmatite of the
Espinal Formation, while the intrusives gives younger ages. The Cerro Toro
tonalite for Rb/Sr gives an age in total rock in 456±14 Ma (Saavedra et al.,
1992, 1996) and a gabbro of the same intrusive complex gave for U-Pb SHRIMP, 468±3
Ma (Rapela et al., 1999.)
The
Intermediate Zone: It is formed by metasediments and metavolcanites
corresponding to Gondwana land, in which intruded different plutons that
producing contact metamorphism.
The
Narváez pluton, the most northern area of the Sistema de Famatina, are intruded
in volcanites and volcaniclastic sediments, with fossils of the Lower
Ordovician, from the Arenig to the Caradoc. Rubiolo et al., (2002)
obtained an age U-Pb in zircon of 485±7 Ma that would correspond to the age of
the contact metamorphism.
In
the summit of the Sierra of Famatina and their continuation to the south, in the
mountains of Sañogasta and Vilgo, the plutons show epizone character and they
are intrusives in metaturbidites of the Upper Precambrian – Lower Cambrian of
the Negro Peinado/La Aguadita formation, of low metamorphic grade whose
geochronologic age is not still known, and likewise they are scarce the data of
its internal structure. In the summit of the range, like in the Cerro Negro
Overo, and Cumbre Baya hills, the granite presents roof pendants, transformed in
hornfels of fine grain, massive with cordierite- potassium feldspar-
andalusite-sillimanite (Toselli, 1978; Rossi et al., 1997a and b). The
Ordovician volcaniclastic sediments with fossils, are reduced outcrops in the
Sierra de Famatina, with ages from the Lower Tremadocian to the Llanvirn.
Rapela
et al. (1999)
obtained in circones of a biotite-granodiorite of the Cerro Ñuñorco, an U-Pb
age SHRIMP 484±5 Ma, considered as the maximum age of the contact metamorphism.
The discontinuous deformation zones, always has cataclastic textures.
Eastern
zone: In the Sierra de Paganzo, at southeasternmost of the Sistema de Famatina,
the metamorphic rocks crop out as the roof cover of the plutons (Saal, 1993,
Saal et al., 1996). Schists and gneisses predominate at de summit of the
sierra and pass to schists in its eastern flank. An older S1
relict foliation was recognized, but it was overprinted
by the strong thermal metamorphism. The septa and roof pendant consist of
cordierite-biotite-potassium feldspar-plagioclase-sillimanite, high
temperature-low pressure paragenesis, estimated in 650ºC±50ºC and 3.5±0.5
Kbar (Saal, 1993).
The
Rb-Sr whole rock isotopic data allowed to estimate an age of 522±47 Ma for the
metamorphic basement prior the thermal metamorphism, and another Rb-Sr
biotite-whole rock yielded a 450.9 Ma which was interpreted as the thermal
metamorphism or the cooling age (Saal, 1993).
The
Sierra de Paimán is the easternmost outcrop of the Sistema de Famatina. It
consists of mainly porphyritic coarse grain two mica granites. Scantily
remainder of supracrustal metawackes with low metamorphic grade of host rock,
are in tectonic contact to the granite.
Dark
fine-grained hornfels appear in roof pendants and consist of cordierite,
andalusite, potassium feldspar and sillimanite. (Rossi et al., 1997b). No
isotopic data are available therefore, the age of the contact metamorphism is
estimated equivalent to the age of the Ñuñorco granite of 484±5 Ma (Rapela et
al., 1999).
The
Sierra de Fiambalá located to the northeast of the Sierra de Famatina is
partially correlated with the Famatinian Belt. It consists of metawackes,
metapelites and carbonates considered as the equivalents of the Puncoviscana
Formation (Neugebauer, 1996), in which the metamorphic grade increases from the
west to the east from greenschists to amphibolite facies and migmatites. Pampean
age is estimated for these sequences (Neugebauer, 1996; Neugebauer and Miller,
1996; Grissom et al., 1998). The last authors have recognized in the
basement ages from Proterozoic to Pampean, and an Ordovician deformation event
of 464±2 Ma which originated a NNW-SSE trending strong foliation. The
thermobarometric data were obtained in calc-silicate paragenesis of the contact
aureole of a metagabbro-norite intrusion with a peak of T and P of 800ºC and
7.5 kbar, respectively (Grissom et al., 1998).
A
later Devonian ductile shear deformation affected de basement. Neugebauer (1996)
recognized three NNW-SSE trending shear systems. The Rb/Sr mineral-whole rock
data of 392±8.7 Ma and 357.3±8.1 Ma were obtained by Söllner et al.,
(2001) for these ductile shear zones.
The
Western belt
This
belt includes the Sierras Pampeanas Occidentales (from Caminos 1979). From north
to south the following ranges belong to this belt: the western flank of the
Sierra de Fiambalá, Sierra de Toro Negro, de Umango, Las Ramaditas, Maz, Valle
Fértil - La Huerta and Pié de Palo. This crystalline basement was developed
from psammopelitic sediments and carbonates, with important basic and ultrabasic
intrusives and minor granites. The strong deformation and metamorphism
overprinted the older structures and no allows to distinguish the different
tectonic-magmatic and metamorphic events. Over this basement, rests of Cambrian
to Devonian aged carbonatic platform of La Rioja, San Juan and Mendoza
Precordillera outcrop. The geological interpretation of the spatial and
contemporary carbonatic platform of the Precordillera and the magmatic
Famatinian arc has been, and it is today a controversial subject. While a
hypothesis, based mainly in biostratigraphic evidences (Vaccari, 1995,
Benedetto, 1998) and limited data that suggest the Precordillera terrain is
underlain by grenvillian-age basement rocks holds up a Laurentian affinity of
the Precordillera (Dalla Salda et al., 1992; Varela y Dalla Salda, 1992;
Mc Donough et al., 1993; Kay et al., 1996; Varela et al.,
1996; Ramos et al., 1998; Baldo et al., 2001; Casquet et al.,
2001); another much earlier model (Baldis et al, 1975) in which the
Precordillera terrain was always part of Gondwana has been recently considered
(Aceñolaza and Toselli, 1999; Finney et al. in press).
The
first detailed studies of the structure and metamorphism of these sierras were
accomplished by Kilmurray and Dalla Salda (1971a, b); Dalla Salda and Varela
(1982, 1984) and Dalla Salda (1987).
The
authors distinguished in the Sierras de Maz, Cerro Valdivia and the half- south
of the Sierra de Pié de Palo three relative aged structural domains. The D1
older domain developed during a strong folding event,
especially in the Sierra de Pié de Palo and the Cerro Barbosa, with plastic
flow, tight and overturned folds. The WSW-ENE the fold axis dips vary between 30º
and 60º and their axial planes strike NNW-SSE. Also steep faults and low-angle
thrusting planes trend in a similar nearly E-W direction. The same old-trending
structures were recognized in the Sierras de Córdoba and San Luis. Dalla Salda
(1987) attributed this event to the Upper Cambrian.
The
D2 domain, the most conspicuous one,
has NNW-SSE trending, tight and west overturned folds. They are frequently
associated with low-angle faults parallel to the fold axial planes and to the
main shear belts (Dalla Salda, 1987). This domain is well developed in the
Sierras de Valle Fértil (Mirre, 1971) and Pié de Palo. A metamorphic event
syntectonic with D2, is the main metamorphic episode
of the region. Synkinematic garnets, garnets grown over previous garnets,
intersections of D2 schistosity on D1,
and microfolding of D1
schistosity
by D2, have been observed in the Pié de
Palo, Barbosa, Valdivia and de Maz ranges. The D2
domain
was considered related to the Famatinian (Ordovician) events (Dalla Salda,
1987).
The
D3 structural domain is characterized
by NNE-SSW trends. The structures are the product of a less intense tectonism
than D2,
and only 15% of the folds are tight flowing-types. The great majority are open
folds locally accompanied by kink band sets and crenulation cleavage. In the
Sierra de Pié de Palo this phase was characterized by a compressive event
marked by tight folding and thrusting. Several pegmatitic stripes, narrow
chloritic shear zones, mylonitic belts and crenulation cleavage planes cutting a
prevoius D2 schistosity follow the D3
direction (Dalla Salda, 1987).
In
the sierras de Maz and Valle Fértil, the peak of the metamorphism was reached
during the D2 phase and estimated in the pelitic
mineral paragenesis garnet-sillimanite-kyanite as belonging to the amphibolite
facies - barrowian type - of intermediate pressures. In the Sierra de Pié de
Palo, the western area grades from greenschists to amphibolite metamorphic
facies, while in the eastern sector the metamorphism increases up to upper
amphibolite and pass locally to granulite facies (Dalla Salda and Varela, 1984).
Lately, the basement of the Sierra de Pié de Palo was divided in two
metamorphic units: the Pié de Palo Complex (high metamorphic grade) and the
Caucete Group (low metamorphic grade), separated by a regional structure known
as the Pirquitas Fault (Ramos and Vujovich, 1995). The Pié de Palo Complex
consists in part of an ophiolitic assemblage, represented by peridotites,
meta-gabbros, greenschists, talc, serpentinites and amphibolites. East of the
ophiolites, the central and eastern parts of the Sierra de Pié de Palo is
composed of feldspar-biotitegarnet schists, gneisses, amphibolites and marbles.
The Caucete Group consists of low grade metamorphic rocks. These were carbonate
and clastic shelf sequences, now represented by marbles, quartzites and
quartzose schists.
The
earliest data of the Pié de Palo Complex are from Varela and Dalla Salda
(1992), who obtained a Rb-Sr whole rock isochrone of 1027 ± 59 Ma. U-Pb ages of
abraded zircons from magmatic and metamorphic rocks of the Pié de Palo Complex
have indicated Middle Proterozoic ages of 1100 - 1000 Ma (Mc Donough et al.,
1993). These authors conclude that the data represent an important
tectono-metamorphic event of Grenville age.
In
a southwestern sector of the Caucete Group, in a calc-pelitic milonitized schist
and a migmatitic milonitized paragneiss, Casquet et al. (2001) obtained
thermal-barometric data of high P/T, gradient with a pressure peak of 13 kbar, a
clockwise P-T path and T of 600º C. U-Pb SHRIMP ages of zircon rims yielded 460
Ma, while the zircon cores provided ages of 1224-1032 Ma. The zircon rims ages
were interpreted as the Ordovician collisional event (the Precordillera terrane
against the Famatinian belt), while the zircon cores ages were interpreted as a
Grenville inheritance (Casquet et al., 2001).
Ramos
et al., (1998) obtained 40Ar/39Ar
age spectra in hornblende and muscovite from the ductile shear belts mainly the
Pirquitas thrust, that yuxtapose rocks of the Caucete Group and the Pié de Palo
Complex. The plateau ages of 470-460 Ma for hornblendes is interpreted as the
initiation of the collision of the Precordillera platform against Gondwana and
the plateau ages of 394 Ma for muscovite indicate that the subsequent cooling
lasted until the early Devonian (Ramos et al., 1998).
The
structural and metamorphic evolution of the Sierras de Umango, Espinal, Las
Ramaditas and Maz were studied recently by Fernandez et al. (2001, 2002),
Vujovich et al., (2001), Porcher et al. (2001). These authors
suggest that the outcroping rock units share the same deformation histories.
The first known episode occurred in upper amphibolite facies metamorphism and developed a planar foliation with a well defined NNW trending mineral stretching and lineations. The major shear zones indicate a transport to the north. The original fabric was affected by several tight folding events, that ductile fabric control (Fernandez et al., 2001). The two deformation events would be equivalent to the D1 and D2 domains of Dalla Salda (1987). The absolute age of the last deformation
is
still uncertain but it could be attributed to Famatinian events, in the original
sense of Dalla Salda (1987)
The
T-P conditions of metamorphism were obtained in several petrographic different
rocks. In metapelites of the Sierra de Maz, the values of T and P resulted 630º
C and 5 Kbar, and 771º C and 6.3 Kbar, respectively, while in amphibolites of
the Sierra de Umango were obtained 650ºC and 6 Kbar. These metamorphic
conditions belong to a Barrovian Type of intermediate pressures that share both
sierras in a same baric style (Porcher et al., 2001). The hornblende
crystallization pressure in the Cerro Toro Tonalite, intruded in the Espinal
Formation, of 6 kbar, similar to that of the host rocks, support these
assumptions (Rossi de Toselli et al., 1991).
The
Sierra de Umango radiometric data were determine by Varela et al.,
(1996). A whole rock Rb- Sr isochrone of 1030±30 Ma was obtained from an
orthogneiss within an antiform core at the Quebrada de Juchi and a new zircon
data by conventional U-Pb in the same rock yielded 1108±13 Ma (Varela et al.,
in press). The El Peñon granite is a deformed granitoid, intruded in
garnet-bearing phyllites and schists of the greenschists facies, located at the
west flank of the Cerro El Cordobés, a Rb-Sr isochrone of 469±9 Ma was
obtained, which was interpreted as the deformation age (Varela et al.,
1996) and a new determined zircon U-Pb age of 534±9 Ma is interpreted as the
crystallization age (Varela et al., in press).
The
central- east sector of the Sierra de Valle Fértil is composed by a
metaluminous sequence of hornblende-biotite tonalites/granodiorites, and suites
of troctolitic, noritic and hornblende gabbros intruded in high-grade
metapelites, marbles and amphibolites. In two migmatitic samples, Rapela et
al. (2001) acquired U-Pb SHRIMP data. The zircon rims provided 465.9±4.4 Ma
and 466.5±7.7 Ma, which were interpreted as the anatexis age, and the zircon
cores ages range from 500 to 2000 Ma which were interpreted as Gondwanan
inheritances. There are not thermal-barometric data in central- east sector of
the Sierra de Valle Fértil, but the predominance of
cordierite-garnet-sillimantebearing diatexites and hypersthene-pleonast-bearing
metagabbros (Mirre, 1971) indicate high temperatures and middle- to low
pressures.
The
Loma de Las Chacras to the southwestern of Sierra de la Huerta, was studied by
Vujovich (1994) who recognized biotite-garnet-bearing gneisses and
kyanite-sillimanite-garnet-bearing gneisses, which predominate with a 60% of the
outcrop rocks. The T-P conditions of the metamorphism were estimated as
intermediate and of barrovian type (Vujovich, 1994).
Baldo
et al., (2001) interpreted the pelitic gneisses as migmatitic, and in a
potassium feldsparquartz- plagioclase-garnet-biotite-bearing leucosome obtained
12.1 Kbar and 769 ºC and concluded that the Loma de las Chacras metasediments,
were migmatized at high pressure.
U-Pb
SHRIMP zircon data of the migmatites provided zircon rims ages of 463±2 Ma
which were interpreted as the anatexis age, and zircon cores with a range of
Mesoproterozoic to Cambrian ages, which were interpreted as Gondwanic
inheritance.
Based
on the U-Pb SHRIMP data from Casquet et al., (2001) and Baldo et al. (2001)
the same authors placed the limit between the Precordillera terrain and
autochthonous Gondwana along the present day Bermejo river.
Discussion
and conclusions
The
division of the Argentine northwestern basement in several metamorphic belts
allows synthesize the distribution of the Ordovician tectonic-metamorphic events
in relationship with the contemporary magmatic events, and with the structural
level exposed by the Andean tectonics.
The
Eastern Belt that encompasses the Cordillera Oriental (Puncoviscana Formation)
with a few Middle Cambrian aged granitoids, the Sierra the Cachi, the south of
Salta ranges, the North East, Center and North West of Tucumán ranges, that
consists mainly of supracrustal turbidites of very low- to low metamorphic
grade, which from North to South underwent a little increase of the metamorphic
grade and the P/T ratio. They are mainly phyllites, that had developed from a S0
parallel cleavage to a recrystallization schistosity by
transposition, and growth of layering with separated white mica and chlorite
rich bands and quartz rich bands by pressure-solution mechanism.
The
age of M1 metamorphism, range 560-540 Ma and
there are not later events recorded.
In
the Cumbres Calchaquies, Aconquija and Ancasti ranges, the D2
deformation phase produced a NNW-SSE to NNE-SSW
trending strong isoclinal folding with complete transposition of older
structures. The Pampean metamorphism M2 developed in deeper tectonic-metamorphic
levels and caused the characteristic schists banding of the region whose age
range 580 - 540 Ma.
The
deformation phase D3 developed NNW-SSE trending tight folding, minor folding,
great scale flexures and strong axial plane schistosity. The M3 metamorphism
increased from low- to high grade with low-to intermediate pressures. It had
developed mineral index zones of garnet, cordierite, andalusite and staurolite.
The peak of the metamorphism was reached in the cordierite-potassium
feldspar-sillimanite zone accompanied by synkinematic to postkinematic
migmatization. The age of this metamorphism was poorly isotopic constrained in
470 Ma.
Shears
belts and overthrusts are not significant during the Ordovician and later times
in this region, since tectonic discontinuities among the metamorphic unities as
those of the Sierra de San Luis (Sato et al., this volume) are not
observed.
The
development of regional megastructures during the Ordovician controlled several
granitoid intrusions.
The
Central Belt and central and eastern zones of the Famatinian Belt, included the
Ñuñorco granite of the Sierra de Famatina, are characterized by the
predominance of granitoids outcrops in relation to the host rocks. The country
rocks consist of supracrustal turbidites of low- to middle metamorphic grade,
whose ages are Pampean equivalent to the Puncoviscana Formation, supported by
whole rock Rb-Sr and U-Pb in detrital zircon rims data. The maximal ages of the
Ordovician metamorphism in contact aureoles and hornfels are defined by the
crystallization ages of the plutons.
Several
ductile shear belts that affect the granitoids and its contact aureoles are also
characteristic of the Ordovician and Devonian times.
The
western zone of the Famatinian Belt is constituted by biotite-hornblende-bearing
tonalites and granodiorites that had intruded in the Espinal Formation. They
represent the Ordovician magmatic arc, which continues in the Cerro Blanco at
the southernmost of the Sistema de Famatina, in the tonalites and granodiorites
at eastern flank of the Sierra de Valle Fértil and continues to the south in
the western flank of the Sierra de San Luis.
The
Western Belt that include the Sierras Pampeanas Occidentales and partiality the
Sierra de Fiambalá was considered an allochthonous terrane known as
“Occidentalia” or “Cuyania” of Grenville age, although in several
localities were recognized several superimposed events: Pampean magmatism and
metamorphism, Famatinian metamorphism and anatexis, Devonian and Carboniferous
magmatism.
In
the Sierra de Pié de Palo that has been the most dated range of the Sierras
Pampeanas Occidentales with Grenville ages, was found a superimposed Ordovician
tectonic-metamorphic event interpreted as the beginning of the collisional
episode with a high pressure peak of 11 Kbar up to 13 Kbar. The 40Ar/39Ar
recrystallization ages of hornblendes and muscovites in the ductile shear zones,
show a wide spectrum of 470 Ma to 394 Ma that are interpreted as the beginning
of the collision between the Cuyania terrane and Gondwana and lasted up to
Devonian times.
In
the Sierra de Valle Fértil were dated Ordovician metamorphic and magmatic
events in gabbros, granites and migmatites.
The
pressures from 11 kbar to 13 kbar obtained for the Ordovician metamorphism in
the Sierra de Pié de Palo and Sierra de La Huerta are somewhat unexpected when
compared with the pressures in the Sierras de Maz, Umango, and the western flank
of the Sierras de San Luis and El Gigante which underwent strong Ordovician
deformation although the pressures range from 5 Kbar up to 8 kbar.
An
alternative hypothesis holds a Gondwanian origin, against a Laurentian affinity
of the Precordillera terrain (Baldis et al., 1975; Aceñolaza and
Toselli, 1999). Recently, newly acquired detrital zircon ages show evidences of
an early Gondwanian provenance for the Precordillera terrain (Finney et al.,
in press).
In
conclusion: The Eastern Belt records mainly Pampean metamorphism. The Central
Belt and part of the Famatinian Belt have Ordovician tectonic-thermal events
overprinting the Pampean metamorphism, with low P/T ratio and low to high
temperatures. In the Western Belt the Ordovician to Devonian collisional
tectonic-metamorphic events with intermediate to high P/T ratio overprinted
older terrains, allochthonous or parautochthonous of Grenville-Sunsas age.
Acknowledgments.
We wish to express our gratitude to the National
University of Tucumán, project CIUNT, 2001-2003, and PICT 07-09686, as well as
to F. G. Aceñolaza, for reading an early version of the manuscript and whose
suggestions helped to improve it. D. R. Holgado is also aknowledged for the line
drawings.
References
Aceñolaza,
F.G. and Toselli, A.J., 1999. Argentine Precordillera: allochtonous or
autochthonous Gondwanic?. Zentralblatt für Geologie und Paläontologie,
Teil 1 -Hef 7/8: 743-756. Stuttgart.
Astini,
R.E., 1998. Stratigraphical
evidence supporting the rifting, drifting and collision of the Laurentian
Precordillera terrane of western Argentina. In: Pankhurst, R.J. and Rapela, C.W.
(eds) The Proto-Andean Margin of Gondwana. Geological Society London, Special
Publications, 142: 11-33. London.
Adams,
Ch., Miller, H. and Toselli, A.J., 1990. Nuevas edades de metamorfismo por el método K-Ar de la
Formación Puncoviscana y Equivalentes, NW de Argentina. In:
F.Aceñolaza, H.Miller and A.J. Toselli (eds). El Ciclo Pampeano en el Noroeste Argentino. Serie
Correlación Geológica nº4: 209:219. Tucumán.
Bachmann,
G. y Grauert, B., 1987a. Datación de metamorfismo basado en el análisis isotópico
Rb/Sr en perfiles de pequeña sección de metasedimentos polimetamórficos en el
Noroeste Argentino. Décimo Congreso Geológico Argentino. Actas III:
17-20. Tucumán.
Bachmann,
G. and Grauert, B., 1987b. Análisis isotópico Rb/Sr y edad del granate almandino en los gneises
bandeados polimetamórficos de la Sierra de Ancasti y Tafí del Valle, Sierras
Pampeanas, NW Argentina. Décimo Congreso Geológico Argentino. Actas III:
21-24. Tucumán.
Baldis,B.,
Viramonte, J. and Salfity, J., 1975. Geotectónica de la comarca comprendida entre el Cratógeno
Central Argentino y el borde Austral de la Puna. Segundo Congreso
Iberoamericano de Geología Económica. Actas 4: 25-44. Buenos Aires.
Baldo,
E., Casquet, C., Rapela, C.W., Pankhurst, R. J., Galindo, C., Fanning, C.M. and
Saavedra, J. 2001. Ordovician metamorphism at the southwestern margin of
Gondwana: P-T conditions and U-Pb SHRIMP ages from Loma de Las Chacras, Sierras
Pampeanas. III
Simposio Sudamericano de Geología Isotópica (III SSAGI). Publicación en
CDROM. Artículo
544, 4 pags. Pucón.
Becchio,
R., Lucassen F., Franz, G., Viramonte, J.G. and Wemmer, K., 1999. El
basamento Paleozoico inferior del Noroeste de Argentina (13-27ºsur).
Metamorfismo y geocronología. XIV Congreso Geológico Argentino.
Relatorio Geología del Noroeste Argentino. González Bonorino, G., Omarini, R.,
Viramonte, J. (Ed.) Tomo
I: 80-90. Salta.
Bellos,
L., Grosse, P., Rossi, J. and Toselli, A., 2002. Petrografía y geoquímica de granitoides del flanco
sudoccidental de la Sierra de Velasco. Décimo Quinto Congreso Geológico
Argentino, Actas en CD-Rom. Artículo 177, 6 pags. El Calafate.
Benedetto,
J.L., 1998. Early Palaeozoic brachiopods and associated shelly faunas from
western Gondwana: their bearing on the geodynamic history of the pre-Andean
margin. In: Pankhurst, R.J. and Rapela, C.W. (eds). The Proto-Andean Margin of
Gondwana. Geological Society of London, Special Publications, 142: 57-83.
London.
Caminos, R., 1979. Sierras Pampeanas Noroccidentales, Salta, Tucumán, Catamarca, La Rioja, San Juan. In: Academia Nacional de Ciencias Córdoba. II Simposio Geología Regional Argentina I: 225-291. Córdoba.
Casquet,
C., Baldo, E., Pankhurst, R.J., Rapela C.W., Galindo, C., Fanning, C.M. and
Saavedra, J., 2001. Involvement of the Argentine Precordillera terrane in the
Famatinian mobile belt: U-Pb SHRIMP and metamorphic evidence from the Sierra de
Pie de Palo. Geology, 29 (8): 703-706. Boulder.
Cisterna,
C. y Toselli, A.J., 1996a. Granitos y volcanitas de la Sierra de Narváez. In: Geología del
Sistema de Famatina, Aceñolaza, F.G., Miller, H. and Toselli, A.J. eds. Münchner
Geologische Hefte, 19 (Reihe A): 261-274. Munich.
Cisterna,
C. y Toselli, A.J., 1996b. Granitoides Cerro Blanco-San Agustín y sus rocas básicas.
In: Geología del Sistema de Famatina. Aceñolaza, F.G., Miller, H. and
Toselli, A.J. eds. Münchner Geologische Hefte, 19 (Reihe) A: 187- 198. Munich.
Cisterna,
C.E., 1998. La granodiorita de Las Angosturas, Sistema de Famatina, Argentina:
caracterización petrográfica y geoquímica. Revista de la Asociación Geológica
Argentina, 53 (1): 57-68. Buenos Aires.
Cisterna,
C.E., 2000. Evolución magmato-tectónica del Complejo granítico Cerro Blanco,
Sistema de Famatina, Argentina. Revista de la Asociación Geológica
Argentina, 55 (1-2): 72-82. Buenos Aires.
Coira,
B., Koukharsky M. and Volkheimer, W., 1968. Sobre el hallazgo de Paleozoico
inferior en la sierra de Velasco (Provincia de La Rioja), entre los paralelos 29º
30’ y 29º 50’. Terceras Jornadas Geológicas Argentinas, Tomo I:
230-247. Comodoro Rivadavia.
Coira,
B. 2002.. in:
F.G. Aceñolaza (ed) Aspects of the Ordovician System of Argentina. Serie
Correlación Geológica 16.
Tucumán.
Dahlquist,
J.A. y Baldo, E.G.A., 1996. Metamorfismo y deformación famatinianos en la
sierra de Chepes, La Rioja, Argentina. XIII Congreso Geológico Argentino y
III Congreso de Exploración de Hidrocarburos, Actas V: 393-409. Buenos
Aires.
Dalla
Salda, L. and Varela, R., 1982. La estructura del basamento del tercio sur de la
Sierra de Pie de Palo, provincia de San Juan, Argentina. V Congreso
Latinoamericano de Geología, Actas 1, 451-468. Buenos Aires.
Dalla
Salda, L. y Varela R., 1984. El metamorfismo en el tercio sur de la Sierra de
Pie de Palo, San Juan. Revista de la Asociación Geológica Argentina, 39
(1-2): 68-93. Buenos Aires.
Dalla
Salda, L., 1987. Basement
tectonics of the Southern Pampean Ranges, Argentina. Tectonics, 6 (3):
249-260. Washington.
Dalla
Salda, L., Cingolani, C. and Varela, R., 1992. Early Paleozoic orogenic belt of
the Andes in south western South America: result of Laurentia-Gondwana
collision? Geology, 20: 617-620. Boulder.
Fernández,
L.A.D., Porcher, C.C., Vujovich, G.I.,Silva, A.M.O., Escosteguy, L.D., Fauqué,
L. and Morales, L.F.G. 2002. Geología estructural e termobarometria dos gnaisses das Serras
Pampeanas do NW e suas implicaçoes na evoluçao tectonica da Precordilheira
Argentina. Actas del XV Congreso Geológico Argentino, Cingolani, C.A.,
Linares, E., López de Luchi, M.G., Ostera, H.A. and Panarello, H.O. (Eds.) Actas
del XV Congreso Geológico Argentina CD-ROM. Artículo nº 319, 5 pags. El
Calafate.
Fernández,
L.A.D., Porcher, C.C., Vujovich, G.I., Escosteguy, L.D. and Morales, L.F.G.,
2001. Geología estructural de los gneises de las sierras de Maz y Umango, La
Rioja, Argentina: Datos preliminares. XI Congreso Latinoamericano de Geología.
Actas CD-ROM, artículo nº 284, 5 pags. Montevideo.
Finney,
S., Gleason, J., Gehrels, G., Peralta, S., and Aceñolaza, G. (in press) Early
Gondwanan Connection for the Argentine Precordillera Terrane. Earth and
Planetary Sciences Letters. Amsterdam.
Galliski,
M.A., Toselli, A.J. and Saavedra. J., 1990. Petrology and geochemistry of the
Cachi high-alumina trondhjemites; nothwestern Argentina. In: S. Mahlburg Kay and
C.W. Rapela (eds). Plutonism from Antarctica to Alaska. Geological Society of
America Special Paper 241: 91-100. Boulder.
Gonzalez
Bonorino, F., 1951a . Granitos y migmatitas de la falda occidental de la Sierra
de Aconquija. Revista de la Asociación Geológica Argentina, 6 (3): 137
– 186. Buenos Aires.
González
Bonorino, F., 1951b. Descripción geológica de la Hoja 12e Aconquija.
Ministerio de Industria y Comercio de la Nación. Dirección General de
Industria Minera, Buenos Aires. Boletín nº 75. Buenos Aires.
Grissom,
G.C., DeBari, S.M. y Snee, L.W., 1998. Geology of the Sierra de Fiambalá,
northwest Argentina: implications for early Palaeozoic Andean Tectonics. In:
Pankhurst, R.J. y Rapela, C.W. (Ed.) The Proto-Andean Margin of Gondwana. Geological
Society Special Publication nº 142: 297-323. London. Hollister, L.S.
Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B., 1987. Confirmation
of the empirical
correlation
of Al in hornblende with pressure of solidification of calc-alkaline plutons. American
Mineralogist, 72: 231-239. Washington.
Höckenreiner,
M., Söllner, F., and Miller, H. 2001. The TIPA shear zone
(NW-Argentina):evidence for Early Devonian movement verified by Sm-Nd dating of
garnet and whole rock systems. III Simposio Sudamericano de Geología Isotópica (III
SSAGI). Publicación en CD-ROM. Pucón.
Kay,
S.M., Orrell, S. and Abruzzi, J.M., 1996. Circón and whole-rock Nd-Pb isotopic
evidence for a Grenville age and Laurentian origin for the basement of the
Precordillera in Argentina. Journal of Geology, 104: 637-648. Chicago.
Killmurray,
J. and Dalla Salda, L., 1971a. Las fases de deformación y metamorfismo en el área del Cerro
Valdivia, provincia de San Juan, Argentina. Revista de la Asociación Geológica
Argentina, 26(1): 25-39. Buenos
Aires.
Killmurray,
J. and Dalla Salda L., 1971b. Las fases de deformación y metamorfismo en la Sierra de Maz,
provincia de la Rioja, Argentina. Revista de la Asociación Geológica
Argentina, 26 (2), 245-263. Buenos Aires.
Knüver,
M. 1983. Dataciones radimétricas de rocas plutónicas y metamórficas.In:
F.G.Aceñolaza, H.Miller y A. Toselli (eds). La Geología de la Sierra de
Ancasti. Münstersche
Forschungen zur Geologie und Paläontologie.
59:201-218. Münster.
López,
J.P. and Toselli, A.J., 1993. La faja milonítica TIPA: Faldeo oriental del Sistema de Famatina. Duodécimo
Congreso Geológico Argentino y Segundo Congreso de Exploración de
Hidrocarburos, Acta III: 39-42. Mendoza.
Lork,
A., Miller, H. and Kramm, U., 1989. U-Pb zircon and monazite ages of the La
Angostura granite and the orogenic history of the Northwest Argentine Basement. Journal
of the South American Earth Sciences, 2: 147-153 Oxford .
Lork,
A., Miller, H., Kramm, U. and Grauert, B., 1990. Sistemática U-Pb de circones detríticos de la
Formación Puncoviscana y su significado para la edad máxima de sedimentación
en la Sierra de Cachi (Provincia de Salta, Argentina). In: F.Aceñolaza, H.
Miller and A. J. Toselli (eds). El Ciclo Pampeano en el Noroeste Argentino, Serie
Correlación Geológica nº4: 199-208. Tucumán.
Lucassen,
F., Becchio, R., Wilke, H.G., Franz, G., Thirdwall, M.F., Viramonte, J. and
Wemmer, K., 2000. Proterozoic- Paleozoic development of the basement of the
Central Andes (18º-26º S) – a mobile belt of the South America craton. Journal
of South American Earth Sciences 13: 697-715. Oxford.
McDonough,
M.R., Ramos, V.A., Isachsen, C.E., Bowring, S.A. and Vujovich, G.I., 1993. Edades
preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras
Pampeanas Occidentales de San Juan: sus implicancias para el supercontinente
proterozoico de Rodinia. Duodécimo Congreso Geológico Argentino y Segundo
Congreso de Exploración de Hidrocarburos. Actas vol. 3: 340-342. Mendoza.
Miller,
H., Toselli, A.J., Rossi de Toselli, J. and Aceñolaza, F.G. Regional and
geochronological development of the Metamorphic basement in Northwest Argentina.
Zentralblatt für Geologie und Paläontologie 1 (1/2): 263-273.
Stuttgart.
Mirré,
J., 1971. Caracterización de una comarca de metamorfismo epizonal de alto
grado: la Sierra de Valle Fértil, provincia de San Juan, Argentina. Revista
de la Asociación Geológica Argentina 26 (1): 113-127. Buenos Aires.
Neugebauer,
H, 1996. Die Mylonite von Fiambala. Strukturgeologische und petrographische
Untersuchungen an der Ostgrenze des Famatina-Systems, Sierra de Fiambalá,
NW-Argentina Müchner Geologische Hefte A18, 126 pags. Munich.
Neugebauer,
H. and Miller, H., 1996. La
naturaleza tectónica del limite oriental del Sistema de Famatina en la Sierra
de Fiambalá. In: Aceñolaza, F.G., Miller, H. y Toselli, A.J. (eds):
Geología del Sistema de Famatina. Münchner
Geologische Hefte, 19: 325-341. Munich.
Pankhurst,
R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I. and
Fanning, C.M., 1998. The Famatinian magmatic arc in the central Sierras
Pampeanas: an Early to Mid-Ordovician continental arc on the Gondwana margin.
In: Pankhurst, R.J. and Rapela C.W. (eds) The Proto-Andean Margin of Gondwana. Geological
Society Special Publications, 142: 343-367, London.
Pankhurst,
R.J., Rapela, C.W. and Fanning, C.M., 2000. Age and origin of coeval TTG, I- and
S-type granites in the Famatinian belt of NW Argentina. Transactions of the
Royal Society of Edinburgh. Earth Sciences. 91: 151-168.
Porcher,
C.C., Fernandes, L.A.D., Vujovich, G.I. and Silva, A.O.M. 2001. CondiVoes
de metamorfismo na serras de Maz e Umango, La Rioja, Argentina: resultados
preliminares de termobarometría. Duodécimo Congreso Latinoamericano de
Geología. Montevideo.
Ramos,
V.A., 1995. Sudamérica: Un mosaico de continentes y océanos. Ciencia Hoy, 6:
24-29. Buenos Aires.
Ramos,
V. A. y Vujovich, G., 1995. Hoja Geológica San Juan, escala 1: 250000. Dirección
Nacional del Servicio Geológico. Subsecretaría de Minería (open-file
report). Buenos
Aires.
Ramos,
V., Dallmeyer, R.D. and Vujovich, C., 1998. Time constraints on the early
Palaeozoic docking of the Precordillera, central Argentina, in Pankhurst, R.J.
and Rapela, C.W., eds. The proto-Andean margin of Gondwana: Geological
Society London Special Publication 142: 143-158. London.
Rapela,
C.W., 1976a. El basamento metamórfico de la región de Cafayate, provincia de
Salta. Aspectos petrológicos y geoquímicos. Revista de la Asociación Geológica
Argentina, 31(3): 203-22. Buenos Aires.
Rapela,
C.W., 1976b. Las rocas granitoides de la región de Cafayate, provincia de
Salta. Aspectos petrológicos y geoquímicos. Revista de la Asociación Geológica
Argentina, 31 (4): 260-278. Buenos Aires.
Rapela,
C.W., Heaman, L.M. and McNutt, R., 1982. Rb-Sr geochronology of granitoid rocks
from the Pampean Ranges, Argentina. Journal of Geology, 90 (5):574-582.
Chicago.
Rapela,
C.W., Pankhurst, R.J., Dahlquist, J, and Fanning, C.M., 1999. U-Pb SHRIMP ages
of Famatinian Granites: New constraints on the timing, origin and tectonic
setting of I-and S-type magmas in an ensialic arc. Actas II South American
Symposium on Isotope Geology (IISAGI). 264-267. Carlos Paz.
Rapela,
C.W., 2000. Discusión: El ambiente geotectónico del Ordovícico de la región
del Famatina. Comentario. Revista de la Asociación Geológica Argentina 55
(1-2): 134-138. Buenos
Aires.
Rapela,
C.W., Pankhurst, R.J., Baldo, E., Casquet, C., Galindo, C., Fanning, C.M. and
Saavedra, J. 2001. Ordovician metamorphism in the Sierras Pampeanas: New U-Pb
SHRIMP ages in Central-East Valle Fértil and the Velasco
Batholith. III
Simposio Sudamericano de Geología Isotópica (III SSAGI). Publicación en
CD-ROM. Artículo
616, 4 pags. Pucón.
Rossi
de Toselli, J.N., Toselli, A.J. and Toselli, G.A., 1976. Migmatización
y metamorfismo en la Sierra de Quilmes, al oeste de Colalao del Valle, provincia
de Tucumán, Argentina. Revista de la Asociación Geológica Argentina,
31 (2): 83-94. Buenos Aires.
Rossi
de Toselli, J., Toselli, A. J., Willner, A. and Medina, M., 1987a.
Geotermobarometría de granate-biotitacordierita en los gneises de alto grado
entre las regiones de Cafayate y Colalao del Valle, Sierra de Quilmes,
Argentina. Décimo Congreso Geológico Argentino, Acta III:25-30, Tucumán.
Rossi
de Toselli, J., Toselli A.J., Medina, M.A. and Saal, A.E, 1987b. Los stocks
granofíricos de Chaschuil, Sierra de Narváez, Catamarca, Argentina. Décimo
Congreso Geológico Argentino, Actas IV: 151-153. Tucumán.
Rossi
de Toselli, J.N., Toselli, A.J. and Wagner, S. 1991. Geobarometría
de hornblendas en granitoides calcoalcalinos : Sistema de Famatina, Argentina. Sexto
Congreso Geológico Chileno, Actas. Vol. I : 244-247. Viña del Mar. Rossi,
J.N., Toselli, A.J. and Durand, F.R., 1992. Metamorfismo de baja presión, su relación con el
desarrollo de la cuenca Puncoviscana, plutonismo y regimen tectónico,
Argentina. Estudios Geológicos, 48 (5-6): 279-287. Madrid.
Rossi,
J.N., Durand, F.R., Toselli, A.J. and Sardi, F.G., 1997a. Aspectos
estratigráficos y geoquímicos comparativos del basamento metamórfico de bajo
grado del Sistema de Famatina, Argentina. Revista de la Asociación Geológica
Argentina, 52(4): 469-480. Buenos Aires.
Rossi,
J.N., Toselli, A.J., Durand, F.R., Saravia, J. and Sardi, F., 1997b. Significado
geotectónico de corneanas piroxénicas en granitos de las sierras de Paimán,
Velasco y Famatina, provincia de La Rioja, Argentina. Octavo Congreso Geológico
Chileno, II: 1498-1501. Antofagasta.
Rubiolo,
D., Cisterna, C., Villeneuve, M. and Hickson, C. 2002. Edad U/Pb del granito de
Las Angosturas en la Sierra de Narváez (Sistema de Famatina, provincia de
Catamarca). En : Cabaleri, N., Cingolani, C.A., Linares, E., López de Luchi,
M.G., Ostera, H.A. and Panarello, H.O. (Eds.) Actas del Décimoquinto
Congreso Geológico Argentino CD-ROM. Artículo Nº 411, 4 pp. El Calafate.
Saal,
A., 1993. El basamento cristalino de la Sierra de Paganzo, provincia de La
Rioja, Argentina. Tesis Doctoral. Facultad de Ciencias Exactas Físicas y
Naturales. Universidad Nacional de Córdoba. (inédita). Córdoba.
Saal,
A., Toselli, A.J. and Rossi de Toselli, J.N., 1996. Granitoides y rocas básicas
de la Sierra de Paganzo. En: Aceñolaza, F.G., Miller, H. and Toselli, A.J.,
(eds.) Geología del Sistema de Famatina. Münchner Geologische Hefte, 19
(Reihe A) : 199-210. Munich.
Saavedra,
J., Pellitero Pascual, E., Rossi, J.N. and Toselli, A.J., 1992. Magmatic
evolution of the Cerro Toro granite, a complex Ordovician pluton of northwestern
Argentina. Journal of South America Earth Sciences. 5(1):
21-32. Oxford.
Saavedra,
J., Toselli, A.J., Rossi de Toselli, J.N. and Pellitero, E., 1996. Granitoides y
rocas básicas del Cerro Toro, In: F.G.Aceñolaza, H. Miller y A. Toselli (eds).
Geología del Sistema de Famatina. Münchner Geologische Hefte 19:
229- 240. Munich.
Sales
de López, A., López, J.P., Petronihlo, L.A. and Kawashita, K., 1997. Combined 87Rb/86Sr
Spike: Calibration and application to datation of Loma Pelada Granite, Tucumán,
Argentina. I South American Symposium on Isotope Geology, Brasil, Acta:
278-279. Sao Paulo.
Sato,
A.M., González, P.D. and Llambías, E.J..2003. The Ordovician of Sierra de San Luis:
Famatinian magmatic arc and low to high-grade metamorphism. In: F.G. Aceñolaza
(ed) Aspects of the Ordovician System of Argentina. Serie
Correlación Geológica 16
(in press). Tucumán.
Sims,
J.P.; Ireland, T.R.; Camacho, A.; Lyons, P.; Pieters, P.E.; Skirrow,R.G.; Stuart
–Smith and Miró, R., 1998. U-Pb, Th-Pb and Ar-Ar geochronology from the
southern Sierras Pampeanas, Argentina: Implications for the Palaeozoic tectonic
evolution of the western Gondwana Margin. In: Pankhurst, R.J. and Rapela, C.W.
(eds) The Proto-Andean Margin of Gondwana. Geological Society, Special
Publications 142: 259-281. London.
Söllner,
F., Höckenreiner, M. and Miller, H., 2001. Constraints on the ages of
Famatinian igneous intrusions and subsequent deformation in the Sierra de
Fiambalá (Catamarca, NW-Argentina). Tercer Simposio Sudamericano de Geología Isotópica
(IIISSAGI). Publicación en CD-ROM. Pucón.
Toselli,
A.J. and Rossi de Toselli, J.N. 1973. Metamorfismo de las Cumbres Calchaquíes I: Rasgos de
deformación y blastesis en las rocas del faldeo sur-occidental, entre La
Angostura y Tafí del Valle. Tucumán. Revista de la Asociación Geológica
Argentina. XXVIII(1):45-55. Buenos Aires.
Toselli,
A.J., Rossi de Toselli, J.N. and Rapela, C.W., 1978. El basamento metamórfico
de la Sierra de Quilmes, República Argentina. Revista de la Asociación Geológica
Argentina, 33 (2): 105-121. Buenos Aires.
Toselli,
A.J. and Rossi de Toselli, J.N.- Metamorfismo de las Cumbres Calchaquíes II:
Petrología del basamento esquistoso entre La Angostura y Tafí del Valle,Tucumán,
Argentina. Revista de la Asociación Geológica Argentina, Tomo XXXIX
(3-4): 262-275, 1984. Buenos Aires.
Toselli,
A.J., Rossi de Toselli, J., Saavedra, J., Pellitero, E. and Medina, M., 1988.
Aspectos petrológicos y geoquímicos de los granitoides del entorno de Villa
Castelli, Sierras Pampeanas Occidentales-Sistema del Famatina, Argentina.
5°
Congreso Geológico Chileno, Actas. T. III:I 17- I28. Santiago.
Toselli,G.
A, 1977. El Paleozoico
inferior y medio de la región de Volcancito, Sierra de Famatina, Provincia de
La Rioja, República Argentina. Acta Geológica Lilloana. 14: 83-104.
Tucumán.
Toselli,
G. A., 1983. Petrografía del stock granitoide de Las Juntas y metamorfitas
encajonantes, Sierra de Ambato, provincia de Catamarca. Revista de la
Asociación Argentina de Mineralogía, Petrología y Sedimentología, 14
(1-2): 15-24. Buenos Aires.
Toselli,
G. A., 1984. Petrografía del basamento plutónico-metamórfico de las sierras
al norte del Valle de Catamarca, Argentina. Revista de la Asociación
Argentina de Mineralogía, Petrología y Sedimentología, 15 (1-2): 9-23. Buenos
Aires.
Toselli,
A., Reissinger, M., Durand, F.R. and Bazán, C., 1983. Rocas
graníticas. In: F.G. Aceñolaza, H. Miller y A.
Toselli
(eds). La Geología de la Sierra de Ancasti. Münstersche Forschungen zur
Geologie und Paläontologie 59: 79-99. Münster.
Toselli,
A.J., Rossi de Toselli, J.N., Saavedra, J. and Pellitero, E. 1989. Granitoids of
the Tafi Megafracture (Sierras Pampeanas, Argentina): Petrogenetic Implications.
Journal of South American Earth Sciences, vol. 2 (2): 199-204. Oxford.
Toselli,
A.J., Rossi, J.N., Sial, A.N. and Ferreira, V.P., 2001. Terrenos
metamórficos y granitos eopaleozoicos del NW Argentino, indicadores geotectónicos
del Borde Occidental de Gondwana. Undécimo Congreso Latinoamericano de
Geología y Tercer Congreso Uruguayo de Geología, 12 al 16 de Noviembre de
2001. Artículo 182 CD-ROM. Montevideo.
Toselli,
A.J. and Sial, A.N., 2003 (in press). Ordovician magmatism of the Pampean
Ranges, Famatina System and Eeastern Cordillera. NW of Argentina. In: F.G. Aceñolaza
(ed) Aspects of the Ordovician System of Argentina, Serie
Correlación Geológica 16.
Tucumán.
Vaccari,
N.E., 1995. Early
Ordovician trilobite biogeography of Precordillera and Famatina, Western
Argentina: Preliminary results, In: Cooper, J.D., Droser, M.K. and Finney S.C.
(eds) Ordovician Odyssey. Society of Economic Paleontologists and
Mineralogists, Book 77: 193-196.
Varela,
R. and Dalla Salda L., 1992. Geocronología de Rb/Sr de metamorfitas y granitoides del extremo sur
de la Sierra de Pie de Palo, San Juan. Revista de la Asociación Geológica
Argentina 47 (3): 271:275. Buenos Aires.
Varela,
R., López de Lucchi, M., Cingolani, C. y Dalla Salda, L., 1996. Geocronología
de gneises y granitoides de la Sierra de Umango, La Rioja. Implicancias tectónicas.
13º Congreso Geológico Argentino y 3º Congreso de Exploración de
Hidrocarburos, Actas III: 519-527. Buenos Aires.
Varela,
R., Roverano, D. y Sato A.M., 2000. Granito El Peñón, sierra de Umango:
descripción. Edad Rb/Sr e implicancias geotectónicas. Revista de la
Asociación Geológica Argentina, 55 (4): 407-413. Buenos Aires.
Vujovich,
G.I., 1994. Geología del basamento ígneo-metamórfico de la Loma de las
Chacras, sierra de La Huerta, San Juan. Revista de la Asociación Geológica
Argentina, 49 (3-4): 321-336. Buenos Aires.
Vujovich,
G.I., Fernandes, L.A.D., Porcher, C.C. y Fauquè, L., 2001. Sierras Pampeanas
Noroccidentales, La Rioja, Argentina: Su integración regional. Undécimo
Congreso Latinoamericano de Geología. Actas CD-ROM, artículo 281, 7 pags.
Montevideo.
Willner,
A.P., 1983a. Evolución
tectónica. In: F.G.Aceñolaza, H. Miller y A. Toselli (eds). La Geología de la
Sierra de Ancasti. Münstersche Forschungen zur
Geologie und Paläontologie. 59: 157-187. Münster.
Willner,
A.P., 1983b. Evolución
metamórfica. In: F.G.Aceñolaza, H. Miller and A. Toselli (eds). La Geología
de la Sierra Ancasti. Münstersche Forschungen zur
Geologie und Paläontologie, 59: 189-200. Münster.
Willner,
A.P., 1990. División
tectonometamórfica del basamento del Noroeste Argentino. In:
F.Aceñolaza, H. Miller and A.J. Toselli (eds). El Ciclo Pampeano en el Noroeste Argentino. Serie
Correlación Geológica nº 4: 113- 159. Tucumán.
Recibido:
2 de Octubre de
2002
Aceptado: 6 de Diciembre de 2002