Ordovician
Magmatism of the Sierras Pampeanas, Sistema de Famatina and Cordillera Oriental,
NW of Argentina
Alejandro J. TOSELLI1, Alcides J. SIAL2, and Juana N. ROSSI1
1 INSUGEO, Miguel Lillo 205, S.M. Tucuman, 4000, Argentina. E-mail: atoselli@cpsarg.com
2 NEG-LABISE, Dept. of Geology, UFPE, C.P. 7852, Recife, PE. 50,7432-970. E-mail: ans@ufpe.br
Abstract:
ORDOVICIAN MAGMATISM OF THE SIERRAS
PAMPEANAS,
SYSTEMA DE FAMATINA
AND CORDILLERA ORIENTAL.
NW. OF
ARGENTINA.
In NW Argentina, composition, age and relationships of
granitoids with country rocks allow the characterization of four groups of
granitoids and belts: (1) Western, (2) Famatinian, (3) Central, and (4) Eastern.
The Western belt granitoids evolved from protoliths that differ from rocks which
constitute the three other belts. Each group of granitoids presents typological
patterns that allow their classification according to the tectonic setting in
which granitic plutons were formed.
The
Western belt is formed by schists, gneisses, amphibolites and marbles at the
amphibolite to granulite facies, with mineral associations that indicate
intermediate P/T and constitute the country rocks for granitoids with different
ages. This belt extends westward up to the Famatina system where a change in
basement composition is observed.
The
Famatinian belt (includes the Famatina System, the Puna Western Eruptive Zone,
and Los Llanos ranges) encompasses metaluminosos to slightly peraluminous
granitoids, basic-ultrabasic plutonic complexes and volcanics, related to an
active continental margin, associated to a continental hybrid arc, whose
basement is formed by sedimentary and low-grade metamorphic rocks, with low P/T.
The
Central belt granitoids (including the Central Batholithic Zone and the Eastern
Eruptive Zone of the La Puna) are late orogenic, porphyritic to equigranular,
peraluminous to calc-alkalic, generated and emplaced as a response to a
collision. Granitoids intruded low-grade metamorphic rocks and have produced
contact aureoles that indicate low P/T.
The
Eastern belt is characterized by metasedimentary sequences with synsedimentary
alkalic volcanism, and greenschist-facies metacarbonates of the Puncoviscana
Formation that grades up to granulite facies rocks. In these rocks, calc-alkalic
to peraluminous magmatic epidote-bearing granitoids have been emplaced,
controlled by deep-seated faults in response to continental relaxation
phenomena.
The
different P/T ratios allow to interpret the tectonic evolution within a scheme
of diachronic paired metamorphic belts, under the influence of an active
continental margin and strike-slip movements that controlled the magmatic and
metamorphic events and whose current configuration results from the Andean
orogenesis.
Resumen:
MAGMATISMO
ORDOVÍCICO DE SIERRAS
PAMPEANAS,
SISTEMA DE FAMATIMAS
Y CORDILLERA
ORIENTAL,
NOROESTE ARGENTINO.
Las composiciones
y edad de los granitoides y sus relaciones con las rocas metamórficas, en el
Noroeste Argentino, permite caracterizar cuatro cinturones: 1) Occidental; 2)
Famatiniano; 3) Central; 4) Oriental. De los cuales el Occidental, evolucionó a
partir de protolitos diferentes a los que constituyen los otros cinturones. Cada
uno presenta patrones tipológicos que permiten su clasificación con relación
al ambiente tectónico en el cual se han formado.
El
Cinturón Occidental está formado por esquistos, gneises, anfibolitas y mármoles,
en facies de anfibolita a granulitas, con asociaciones, que indican relaciones
P/T intermedias y constituyen el entorno de rocas básicasultrabásicas y
granitos, con diferentes edades. Se extiende hasta el oeste del Sistema de
Famatina, donde se produce el cambio a un basamento diferente, debido a una zona
de strike-slip.
El
Cinturón Famatiniano (que incluye Sistema de Famatina, Faja Eruptiva Occidental
de la Puna y Sierras de Los Llanos) está constituido por granitoides,
metaluminosos a moderadamente peraluminosos, con complejos plutónicos básicos-ultrabásicos
y efusivas relacionadas a un margen continental activo, asociado a un arco híbrido
continental y cuyo basamento está formado por rocas
sedimentarias y metamórficas de bajo grado, con bajas relaciones P/T.
El
Cinturón Central, que incluye la Faja Eruptiva Oriental de la Puna, muestra
caracteres, tardío orogénico, con granitoides porfíroides y equigranulares,
de caracter peraluminoso calcoalcalino, emplazados durante el levantamiento
post-colisional, en respuesta a la colisión. Los plutones intruyen en
metamorfitas de bajo grado en las que producen fenómenos de contacto que
indican bajas relaciones P/T.
El
Cinturón Oriental, está caracterizado por secuencias metasedimentarias, con
volcanismo alcalino sinsedimentario y carbonatos, en facies de esquistos verdes,
de la Formación Puncoviscana que en forma gradacional llegan hasta facies de
granulitas, en las que se emplazan plutones calcoalcalinos y peraluminosos, con
epidoto magmático, controlados por fallas profundas en respuesta a fenómenos
de relajación post-colisionales. L a s diferentes relaciones P/T permiten
interpretar la evolución geotectónica dentro de un esquema de cinturones
apareados diacrónicos, bajo la influencia de un margen continental activo y
movimientos de strike-slip, que habrían controlado los eventos de magmatismo y
metamorfismo.
Keywords:
Ordovician Magmatism. Sierras Pampeanas. Geochronology.
Palabras
clave: Magmatismo
Ordovicico. Sierras Pampeanas. Geocronología.
Introduction
The
diversity of granitic magmatism, with variable petrographic and geochemical
characteristics, took place mainly during the Ordovician in the basement of the
Eastern Sierras Pampeanas, Famatina System, Puna and Cordillera Oriental. This
basement has been formed of psamo-pelitic sediments, partly carbonatic and
partly volcanic, during the Late Precambrian-early Cambrian. On the other hand,
in the basement of the Western Sierras Pampeanas (Caminos, 1979) with a very
restrict Ordovician granitic magmatism, metamorphic rocks developed from
psamo-pelitic sedimentary protoliths, carbonates and basic-ultrabasic
intrusions, of Sunsas/Grenvillean age, and correspond to a different geotectonic
environment.
The
scope of this study is to present a synthesis of the Ordovician granitic
magmatism and to interpret the related geologic processes, under a scheme of
paired metamorphic belts (Miyashiro, 1994). The particular characteristics of
the magmatism in each region, together with the polymetamorphic mineral
association, allow the interpretation of the development of the partially
superposed belts, in response to tectonic processes that have taken place.
Regional
geological characters
The
Ordovician granoitoids play an important role in the Late Precambrian-early
Paleozoic interpretation of the tectonic phenomena that were active in the
different terranes that integrate the territory (Dalla Salda et al.,
1992; Miller, 1999; Rapela et al., 1992, 1999; Pankhurst and Rapela,
1998; Ramos, 2000; Toselli et al., 2001; Aceñolaza y Toselli, 2000).
Protoliths
for the metamorphic rocks permit to distinguish two different regions. An
eastern region formed by clastic metasedimentary rocks and rare carbonatic
levels, that extends up to the western flank of the Sistema de Famatina (Rossi et
al., 1997), in which the Ordovician (Famatinian, Central and Eastern)
granitoid belts developed and that Becchio et al. (1999) regard as
parauthocton terrane and Pampean arc with Nd(tDM)
ages between 1.36 and 2.2 Ga., that permit interpreting them as a Gondwanan
authocton. The western region represented by he Western Sierras Pampeanas
(Caminos, 1979) is constituted by metasedimentary rocks, carbonates and
basic-ultrabasic rocks, that Becchio (2000) and Lucassen et al. (2000)
denominated as Precordillera Exotic Terrane. Details for each of the mentioned
belts are (Fig. 1) discussed below.
Famatinian
Belt
In
this belt, granitoids can be grouped in three zones: Western, Intermediate and
Eastern zones.
The
Western Zone (Toselli et al., 1996a, b). This zone is represented by the
Cerro Toro, Cerro Blanco and San Agustín plutons, constituted by acid and basic
rocks, with marked interaction between them. The equigranular, fine to
coarse-grained, dominant tonalites, are associated to gabbros, granodiorites and
granites, with hornblende, biotite and epidote. The granitoids are of
calc-alkalic, meta- to peraluminous tendency (ASI = 0.8 -1.15) , while diorites
and gabbros are tholeitic. A Rb- Sr isochron yielded an age of 456 ± 14 Ma for
the Cerro Toro granite with r0=
0.70967. Rapela et
al. (1999, 2001) determined for a hornblende-biotite
gabbro, a U-Pb SHRIMP age (zircon) of 468 ± 3 Ma. and in a hornblende gabbro
from the Sierra de Valle Fértil, an age of 486 ± 8 Ma. In this zone, we
include the El Peñón pink granite of the Sierra de Umango (Varela et al.,
2000), finely foliated with biotite, quartz, potassic feldspar and plagioclase,
and with a Rb-Sr age of 469 ± 9 Ma. (r0=0.7110);
as well as the Arenoso granite (Pontoriero et al., 2001), from Sierra de
la Huerta, constituted by small monzogranite outcrops, with microcline, quartz
and oligoclase, rare biotite and muscovite, besides garnet, apatite, allanite,
opaques and epidote. They present calc-alkalic characteristics with ASI = 1-
1.08, which pose them as of volcanic arc. They have a wall rock with an age of
488 ±2.2 Ma.
The
Intermediate Zone. This band is integrated by the Narváez, Ñuñorco, Sañogasta
and Vilgo plutons with granodioritic, granitic and tonalitic compositions, meta-
to peraluminous (ASI = 0.9 –1.2) (without primary muscovite, with biotite,
hornblende and allanite in epidote), and intrusions of lamprophyric dikes. The
epizonal emplacement is evidenced from the contact metamorphism produced in the
Negro Peinado/La Aguadita Formations (Toselli, 1975; Rossi et al., 1997).
Rapela et al. (1999) obtained in zircons from the Cerro Ñuñorco biotite
granite, a U-Pb SHRIMP age of 484 ± 5 Ma and Loske and Miller (1996) determined
and age of 459 Ma by U-Pb.
Rubiolo
et al. (2002)
determined, by U-Pb in the Narváez granite, an age of 485 ± 7.
The
Eastern Zone. In this zone, the Fiambalá (west), Copacabana, Paimán,
Paganzo, southwest of Velasco and Los Llanos ranges, in association with basic
rocks, with meta- to peraluminous character (ASI = 0.9-1.4) and wall rocks vary
from gneisses to metapelites. In the Sierra de Paganzo, Saal (1993) describes
synkinematic granitoids, with age of 450 ± 7 - 456 ± 9 Ma and r0
of 0.709– 0.706. Rapela et al. (1999)
obtained in a biotite granite from the Sierra de Chepes, U-Pb SHRIMP zircon age
of 483 ± 5 Ma and in a two-mica leucogranite, 479±4 Ma.
The
Puna Western Eruptive Zone (Palma et al., 1986), it is constituted by
granitoids, besides volcanic associations of basic rocks (Coira and Koukharsky,
in this volume) and basic-ultrabasic plutonic complexes. The granitoids plutons
correspond to the Macón, Chiquivar, Taca-Taca, Chuquilaqui, Arita, Archibarca,
Antofalla, south of Petaquilla, Batin and Campo Negro, and the continuation in
Chile in the Cordón de Lila and Almeida range, with the Choschas and Tucúcaro
granitoids, all them are intrusives in sedimentary or metamorphic basement with
ordovician ages or older.
The
mafic-ultramafic complex, Ojo de los Colorados, it is described by Zappettini et
al. (1994), to the south of Pocitos saline. In this one they recognize sills
of stratified gabbros of until 200 m of thickness, with alternation of clear and
dark bands of 2 to 10 cm of thickness, made up of plagioclase and clinopiroxene
or for piroxenites. The basal cumulates is represented for wehrlites constituted
by olivine, with frequent clinopiroxene intercumulus and serpentine. These rocks
present intrusives or tectonic relationships with the Tolillar formation
(Tremadocian-Arenig). The chemical characters frames them inside the arc
associations, with intermediate characteristics among tholeitic and
calc-alkaline.
In
the Macón range outcrop granodiorites, with variations to tonalites and
granites with biotite and hornblende, together allanite, apatite, zircon and
titanit. They are of thick grain inequigranular and gray to pink colors. The
pluton is of shallow emplacement and it contains microgranular mafic enclaves,
as likewise metavolcanic and hornfels roof-pendants (Koukharsky, 1988;
Koukharsky et al., 2002). They are situated to the east of Tolar Grande,
and its intrusive in Ordovician sediments with trilobites (Méndez, 1974; Turner
and Mendez, 1979). To the north of this mountain they outcrop monzogranites in
the Batin area that they produce biotitic hornfels in the Tremadocian
(Koukharsky, 1988). Similar relations they have been observed in the southern
end of the south plutón of Petaquilla, on Arizaro saline. The chemical analyses
carried out by Damm et al. (1990) and Koukharsky et al. (2002)
they indicate calc-alkalic characters with ASI = 0.97 to 1.15. In the diagram Rb
vs. Y+Nb of Pearce et al. (1984) they are projected in the field of the
Volcanic Arc Granitoids. The age Ar/Ar in hornblende is 482,7±7.8 Ma.
(Koukharsky et al. 2002).
The
diorite of the Pocitos Igneous Complex, defined by Zappettini et al. (1994)
it was dated by Blasco et al. (1996) for K/Ar on amphibole and biotite in
494±20 Ma. and 470±17 Ma.
The
Llullaillaco granite, has 12 for 4 Km and it is situated to the southeast of the
Salines of Llullaillaco. It is a granodiorite constituted by quartz, plagioclase
and potassium feldspar, with biotite and hornblende. It is of medium grain, of
yellowish cream color and alkaline-calcic characters.
The
Chuculaqui granite, has 12 for 2 Km and it is located to the south of the
Llullaillaco granite. It is a granite constituted by quartz, plagioclase and
potassium feldspar, with biotite. It is of medium grain, of pink color and
alkaline-calcic characters.
The
Taca-Taca pluton is constituted by two-mica granite, of medium grain to thick,
in contact with a granite with biotite and hornblende, of medium grain to thick,
that presents enclaves of tonalites and diorites of fine grain, and whole is
crossed by aplite dikes and pegmatites (Koukharsky and Lanés, 1994). The
granite has values ASI=1.04-1.07. An isochron Rb/Sr gave 469±4 Ma (Llambías
and Caminos, 1986) and (419±16 Ma, Koukharsky and Lanés, unpublished).
From
of the Cordillera de Calalaste the magmatic registrations are prolonged toward
the south with a plutons of: Navarro formation 429±36 Ma (Blasco et al.,
1996); Arita, Antofalla and Campo Negro, 419-418 Ma (Voss et al., 1996).
Becchio (2000) he gives to know ages K-Ar or of exhumation, of the Ordovician
granitoid plutons of the Southern Puna, corresponding to: the Salines de Hombre
Muerto – Cerro Blanco: 452 Ma (hornblende) and El Jote–El Peñón: 446 Ma
(hornblende).
The
Arita granitoid is situated to the south of Arizaro salar. It has 18 for 5 Km.
It is an intrusive complex constituted by a two-mica granite, and that is
intruded by dikes of piroxene-granodiorite. It is of medium grain to thick, with
similar chemical characters to Taca-Taca granite (Damm et al. 1990).
The
Archibarca granite, outcrop to the west of the one on the way of Tolar Grande to
Antofalla.
It
is formed by a biotite monzogranite, pink of thick grain. An age K/Ar in biotite
gave 485±15 Ma. (Palma
et al., 1986).
The
Central Belt
The
granitoids of this belt are microcline phenocryst- and mica-rich, emplaced in
low-grade metamorphic rocks, that allow to integrate, genetically, the Puna
Eastern Eruptive Zone with the Central Batholitic Zone.
The Puna Eastern Eruptive Zone (Méndez et al., 1973). It is constituted by peraluminous plutons (ASI =1.17-1.20), deformed to augen gneisses, as the monzogranite to granodiorite of the Quebrada de Tajamar and the granodiorite of Salar de Diablillos. The Quepente granodiorite, with gneissic to hypidiomorphic texture, is composed by oligoclase, microcline, quartz and biotite, that
together
with the Cobres granodiorite, of similar composition but without deformation,
were intruded by the Churcal granite, constituted by a monzogranite with
cordierite megacrysts, microcline, oligoclase and biotite and the Las Burras
granite, with an age of 428 ± 17 Ma (Zappettini, 1990). The two-mica
porphyritic Ochaqui granite does not exhibit deformation (Coira et al.,
1999). Quenardelle (1989) described fine to medium-grained tonalites, with
plagioclase, quartz, biotite, muscovite and apatite, together with garnet,
tourmaline, titanite and epidote. They pass into leucosyenogranites and
monzogranites that contain microcline, oligoclase, quartz, biotite, muscovite,
apatite and zircon, together with tourmaline, sillimanite, epidote, opaques,
titanite, andalusite and garnet (absent in the leucosyenogranites) and
myrmekites in the monzogranites. They belong to the same zone of granitoids of
Luracatao, Laguna Blanca and Agua de Las Palomas (422 ± 15 Ma). Likewise the
foliated diorite of the Galán hill (417 ± 9.8 and 422 ± 9.8 Ma) and the
granitoids of the Chango Real Formation (448-445 Ma), all were dated by K-Ar
(Linares and González, 1990) and the Tacuil monzogranite of 472 and 473 ± 1 Ma
was dated by U-Pb in monazite (Lork and Bahlburg, 1993).
The
Central Batholitic Zone is integrated by the Fiambalá E., Vínquis, Zapata, Mazán,
Velasco NE, Capillitas, Hualfín, Las Cuevas and Belén batholiths (González
Bonorino, 1950; Turner, 1971; Caminos, 1979; Schalamuk et al., 1989;
Rapela et al., 1992).
The
granitoids are calc-alkalic character and peraluminous (ASI = 1.1-1.7), with K2O>Na2O.
They
show porphyritic textures that grade to medium-grained, equigranular textures
with compositions from biotite monzogranite to two-mica granodiorite. Felsic
muscovite granites (porphyritic, aplites or pegmatites) are abundant. The
mineralogy encompasses quartz, microcline and plagioclase with biotite,
muscovite, cordierite, sillimanite, andalusite and garnet, besides tourmaline
and fluorite (Rossi de Toselli et al., 1985). Toselli et al. (1992,
1996c) determined their conditions of formation (600º-700ºC and 2-4 kbar H2O).
Rb-Sr
studies carried out in the Sierra de Velasco by Rapela et al. (1999,
2001) determined zircon U-Pb SHRIMP ages of 479 ± 3 and 481.4 ± 2.4 Ma for a
two-mica porphyritic monzogranite and also identified a thermal-ductile event of
469 ± 3.9 Ma. K-Ar ages, in Mazán hill, are between 345 and 475 Ma and Vínquis
hill, between 316 and 444 Ma (Linares and González, 1990).
In
Capillitas, Linares and González (1990) determined K-Ar ages (biotite and
muscovite) of 365 and 471 Ma. Rapela et al. (1999) reported ages of 470 ± 3
Ma by U-Pb SHRIMP in zircon, for a porphyritic two-mica monzogranite.
The
Eastern Belt
This
belt presents the largest extension of the metamorphic basement, with respect to
granitoids and its development and comprenhends the Cordillera Oriental, Cumbres
Calchaquíes, and Quilmes, Aconquija, Ancasti and Ambato ranges.
In
the Cordillera Oriental, plutons of the Cachi Formation (Turner, 1961)
constitute an intrusive activity axis in the Puncoviscana Formation, producing
contact aureoles, constituted by spotted phyllites, schists, gneisses and
migmatites of La Paya Formation (Aceñolaza et al., 1975).
The
intrusive rocks form two groups. The first one (Galliski, 1983) is composed,
from north to south, by the Cerro Bayo, Las Palomas, Aguas Calientes, Tres
Tetas, Peñas Blancas, El Morado, Cachi, Libertador, El Brealito and La
Angostura plutons. They are equigranular to porphyritic trondhjemites, formed by
plagioclase and quartz, with biotite, muscovite, epidote, opaques, zircon,
rutile, apatite and titanite. Their emplacement was after the main folding phase
and they intruded in migmatites and gneisses with cordierite, microcline and
biotite formed at the same time. The Al2O3
contents are greater than 15% at 70% of SiO2,
that together with Rb/Sr ratios of 0.08 permit classify them as alumina-rich
continental granitoids (Barker, 1979). The monazite U-Pb dating varies from 462
to 481 Ma and, in zircon, is of 453 Ma (Lork et al. 1989; Miller, 1999).
The
second group, to the south of the previous group, formed by the Vallecito, La
Paya, Las Cabritas, El Alto, El Hueco and Incauca plutons, composed by
porphyritic tonalites and trondhjemites, whose wall rocks are gneisses and
migmatites.The plagioclase is dominant, followed by quartz, biotite and
muscovite, besides perthitic microcline, epidote, cordierite, opaques,
tourmaline, garnet, sillimanite and zircon. The monazite U-Pb ages vary from 466
to 468 Ma and zircon age is of 488 Ma (Lork et al. 1989; Miller, 1999).
Monazite from migmatites yielded an age of 467 Ma. This group of granitoids show
higher SiO2,
lower Al2O3,
and similar trace element contents in relation to the previous group of
granitoids.
Schön
and Miller (1990) observed that the trondhjemites and granites differ in the
major element contents and display similar rare-earth element (REE) contents.
The former are a product of anatexis of pyroxene-plagioclase while the granites
are differentiated melts from a volcanic granitic arc.
Galliski
and Miller (1989) believe that the behavior of the REE point to anatexis from an
amphibolite source from a subducted oceanic crust, while the granite
crystallized from an intracrustal melting.
In
the Sierra de Quilmes, the Cafayate pluton varies from gray to greenish
tonalites and granodiorites to pink monzogranites, with variable amount of
plagioclase, quartz and microcline, besides biotite and muscovite (Rapela,
1976). Chemical analyses evidence a calc-alkalic, peraluminous character (ASI
=1.0-1.3). This pluton shows sharp contact with phyllites and schists, in its
eastern margin, and developed contact metamorphism with cordierite and diffuse
contact to west, with migmatites and gneisses. The Rb-Sr age determined by
Rapela et al. (1982) is of 475 Ma, with r0
of
0.7051. Miller et
al. (1991) obtained a Rb-Sr age of 507 ± 13 Ma with r0
of 0.7043.
The
peraluminous, calc-alkalic tonalite of Las Viñas, northwest of Cafayate, is
associated with microgranitic and pegmatitic dike-rocks composed of plagioclase,
quartz and microcline, with biotite and epidote, that develop notable phenomena
of contact metamorphism (Oyarzabal, 1988).
In
the Cumbres Calchaquíes, Famatinan plutons were emplaced following the NW-SE
lineament known as Tafi megafracture, generated during the D3
deformation (Toselli et al., 1989). The
granitoids in this megafracture comprise the Infiernillo, Loma Pelada, Ñuñorco
Grande, Angostura and El Indio plutons, that are fine- to medium-grained,
equigranular and seldomly porphyritic.
Compositions
vary from two-mica tonalites and granodiorites with magmatic epidote and,
sometimes, titanite, to monzogranites with muscovite and garnet. The ASI index
varies from 0.90 to 1.85. In
the Loma Pelada pluton, Sales de López et al. (1997)
obtained a Rb-Sr isochron age of 470 Ma with r0
of
0.7063.
The
Chaquivil and Cuchiyaco plutons, located out of the Tafi megafracture, are
discordant, medium-grained, two-mica granodiorite to tonalite, accompanied by
aplites and pegmatites, with calc-alkalic character and index (ASI = 0.95-1.10),
that have produced contact metamorphism in the wall rocks. The K-Ar ages for the
Chaquivil pluton are between 456 ± 21 and 479 ± 9 Ma (Linares and González,
1990). Rapela et al., (1982) determined a Rb-Sr age for the Cuchiyaco
granodiorite, of 446 Ma, with a r0
of
0.7066.
In
the Sierra de Ancasti, granitoids of Sauce Guacho, Santa Rosa, Vilisman and
Albigasta are two-mica plutons and vary from granodiorites to monzogranites,
while El Alto is a differentiated granite, with muscovite and garnet. The La
Majada pluton shows tonalitic to granodioritic composition and is associated
with gabbros and diorites with magmatic epidote and the emplacement was
controlled by NW-SE shearing during the D3
deformation.
A whole-rock Rb-Sr isochron yielded ages from 470 to
440 Ma, with (87Sr/86Sr)0
of 0.7052-0.7121 (Knüver, 1983).
The
geochemical parameters indicate meta-peraluminous character (ASI= 0.6-1.6) with
K2O<Na2O
and initial Sr ratio suggest contribution from the mantle or lower mafic
continental crust in its genesis, that coupled with the presence of magmatic
epidote evidence a rapid ascent, controlled by shearing (Saavedra et al.,
1987, Sial et al., 1999).
Discussion
and conclusions
The
magmatic evolution of the NWArgentina was controlled by several geotectonic
events of first magnitude that gave birth to the development of the Western,
Famatinian, Central and Eastern belts that we report below.
During
Tilcárica orogeny (Moya and Salfity, 1982) that marks the peak of the Pampean
cycle (520 Ma.) produced the angular unconformity between the Late - Mid
Cambrian Meson Group and the Puncoviscana Formation and a crustal thickening
during the D2 deformation and low-grade M2
regional metamorphism. During this event, the Tipayoc, Cañaní and Tastil
granitoids were generated, and intruded between 536 and 513 Ma.
The
Guandacol orogeny (475 Ma) is related to an activation of the transcurrency
phenomena on the western flank of Gondwana, with dextral displacement of the
Western region in relation to the Rio de la Plata craton. This orogeny caused
the D3 deformation and M3
metamorphism. The Ocloyica orogeny (450 Ma.)
corresponds to a new displacement of the Western region, giving rise to the D4
deformation and M4
metamorphism.
Both orogenies, Guandacol and Ocloyica, caused a large development of Famatinan
granitic magmatism, in the Famatina system, Pampean Ranges, Cordillera Oriental
and Puna. A deformational event (D5)
took place between 420 and 409 Ma in the Central belt, probably in response to
the amalgamation of the western and eastern regions.
The
transcurrency phenomena and oblique subduction between the Western and Eastern
regions, gave place to the Famatinan belt that generated a continental volcanic
arc with tholeitic magmas, related to calc-alkalic and meta- to peraluminous,
crustal granites that intruded Ordovician sedimentary and metamorphic rocks of
the Espinal Formation, to the west of the Famatina system. In the middle part of
this system, intrusive rocks are meta- to peraluminous, calc-alkalic biotite
granites/ granodiorites, epizonally emplaced and developed pyroxene-bearing
hornfels in the contact zones.
Towards
the end of this event, peraluminous, calc-alkalic, granites, gabbros and quartz
diorites were generated to the continent, and are interpreted as being of active
continental margin (Saavedra et al., 1992). Peacock index (57-61) is
similar to values found for circum-Pacific calc-alkalic magmatic arcs (Brown,
1982).
Resemble
magmatic characteristics show the Puna Western Eruptive Zone, metaluminous to
peraluminous, calc-alkalic to tholeitic, in association with basic-ultrabasic
complexes, took place from 418 – 490 Ma.
In
the Central belt, that encompasses the Eruptive Zone of the Eastern Puna, the
granitoids exhibit K2O>Na2O
and low Ca contents that allow distinguishing two suites. One of them is
peraluminous and formed by two-mica granites with microperthite phenocrysts, and
the other one, of the S-type, shows Al-silicates and micas. The granitoids
display porphyritic textures and late orogenic characteristics, and have
undergone a strong post-collisional uplift that resulted from crustal
shortening, folding and regional metamorphism. These granitoids were probably
responsible for the high-temperature metamorphism that resulted from geothermal
gradients >50ºC.km-1 at low pressure, at depths <20
km. According to Miyashiro (1994), this happens in the crust when the intrusions
are voluminous, at shallow depth. The ages of the granitoids vary from 479 to
458 Ma and those from a second pulse of granitic magmatism display ages from 444
to 413 Ma. A deformational event generated ortogneisses and mylonites at 365 to
318 Ma.
The
granitoids of the Eruptive Zone of the eastern Puna are intepreted as associated
to magmatic arcs related to subduction (Dalziel and Forsythe, 1985; Ramos, 1988;
Rapela et al., 1992). Damm et al. (1990) regarded these granites
as of the S-type, syn- to tardi-kinematic, of crustal origin and associated to a
collisional orogeny. On the contrary, Davidson and Mpodozis (in Coira et al.,
1982) assign them to an extensional, ensialic regime developed between the
Arequipa massif, to the west, and the Brazilian craton, to the east. Miller
(1999) interpreted the granitoids as originated from a transpressional
collision. It is probable that they have been generated in the margin of the
Arequipa- Antofalla massif, while the tardi to posttectonic granites of the
central Batholithic Zone, have been generated from an ensialic, thickened crust
for a rapid adiabatic decompression (Rossi et al., 2002). In the Eastern
Belt, Puncoviscana Formation sedimentary rocks constitute the wall rocks for the
Pampean and Famatinan granitoids, with metamorphism from greenschist to
amphibolite and granulite facies, under low P/T conditions, corresponding to the
Tilcárica orogeny, passing to medium P/T conditions that prevailed during the
Guandacol and Oclóyica orogenies. The genesis and ascent of the granitoids were
controlled by movements of crustal blocks, with faulting and shearing, in
response to the interaction between the Western and Eastern regions. This is
evidenced by the initial Sr ratios of the granitoids of the Tafi megafracture,
that point to crustal- as well as mantle-derived magmas and bimodal associations
(basic-acidic; e.g. Majada pluton; Miller et al., 1991).
The
Chánica orogeny (355 Ma; Moya and Salfity, 1982; Ramos, 1988) marks the
culmination of the Famatinan cycle, giving rise to deformation (D6),
metamorphism (M5), collapse of the Eastern, and
Western regions (Aceñolaza and Toselli, 2000; Ruiz et al., 2001) and the
uplift of the Famatinan belt, by means of strike-slip phenomena. This orogeny
also allowed the deposition of the sedimentary sequences of the Paganzo group
and the generation of the Carboniferous granitoids, recognized in different
belts.
The
development of magmatic and metamorphic phenomena in the belts under
consideration were coeval. In the Famatinan belt, the ages of the igneous rocks
vary from 500 to 416 Ma, with an event of 515 to 495 Ma in the Sierra de Fiambalá.
In the Central and Eastern belts, the granitic plutonism took place from 507 to
419 Ma, but the Eastern belt show also an older magmatic event represented by
Tastil and Cañaní, with ages between 545 and 514 Ma, has been observed.
Acknowledgments. We wish to express our gratitude to the National University of Tucumán, project CIUNT, 2001-2003, CONICET-PIP n. 02573, as well as to F.G. Aceñolaza, for reading an early version of the manuscript and whoses suggestions helped improving it, and D. Holgado for drafting of maps and figures.
References
Aceñolaza,
F.G., Durand, F.R. and Diaz Taddei, R. 1975. Geología y contenido paleontológico
del basamento metamórfico de la región de Cachi, provincia de Salta. 6º
Congreso Geológico Argentino, Actas I: 319-333.
Aceñolaza.
F.G., Toselli, A.J., Rossi de Toselli, J.N., y Coira, B., 1999. Ciclo
Famatiniano. Introducción. XIV Congreso Geológico Argentino. Relatorio
Geología del Noroeste Argentino. Tomo I: 125.
Aceñolaza,
F.G. y Toselli, A.J., 2000. Argentine Precordillera: allochthonous or autochtonous
Gondwanic? Zentralblatt für Geologie und Paläontologie Teil I: 7-8: 743-756.
ISBN 3-510-66021-8.
Barker,
F. 1979. Trondhjemite: definition, environment and hypothesis of origen. In
Barker, F. (Ed.) Trondhjemites, dacites and related rocks. Capt. 1: 1-12.
Becchio,
R., 2000. Petrología
y geoquímica del basamento del borde oriental de la Puna Austral. Tesis
Doctoral, Facultad de Ciencias Naturales, Universidad Nacional de Salta. (inédito).
Becchio,
R., Lucassen, F., Franz, G., Viramonte, J., and Wemmer, K.1999. El Basamento
Paleozoico inferior del Noroeste de Argentina (23º-27ºS) – Metamorfismo y
Geocronología. In: González Bonorino, G., Omarini, R. Y Viramonte, J. Geología
del Noroeste Argentino. Relatorio XIV Congreso Geológico Argentino. Tomo I: 58-72.
Blasco,
G., Villar, L., and Zappettini, E. 1996. El complejo ofiolítico desmembrado de la Puna Argentina.
Provincias de Jujuy, Salta y Catamarca. Actas 13º Congreso Geológico
Argentino y 3º Congreso de Exploración de Hidrocarburos. (3): 653-667.
Brown,
G.C.,1982. Calc-alkaline
intrusive rocks: their diversity, evolution, and relation to volcanic arcs. In:
Thorpe, R.S. (Ed.) Andesites: orogenic Andesites and Related rocks. J.
Willey & Sons. Indianapolis.
Caminos,R.
1979. Sierras Pampeanas Noroccidentales, Salta, Tucumán, Catamarca, La Rioja,
San Juan. In: Academia Nacional de Ciencias Córdoba. II Simposio Geología
Regional Argentina I: 225-291.
Coira,
B., Davidson, J., Mpodozis, C. y Ramos, V., 1982. Tectonic and magmatic evolution of
the Andes of Northern Argentina and Chile. Earth-Science Reviews 18:303-332.
Coira,
B., Toselli, A.J., Koukharsky, M., Rossi de Toselli, J.N. and Kay, S., 1999. Magmatismo
Famatiniano. XIV Congreso Geológico Argentino. Relatorio Geología del
Noroeste Argentino. González Bonorino, G., Omarini, R., Viramonte, J. (Ed.)
Tomo
I: 189-211.
Dalla
Salda, L., Cingolani, C. and Varela, R., 1992. Early Paleozoic orogenic belt of
the Andes in south western South America: result of Laurentia-Gondwana
collision? Geology, 20: 617-620.
Dalziel,
I.W.D. and Forsythe, R.D., 1985. Andean evolution and the terrane concept. In
Howell, D.G. Ed. Tectonostratigraphic terranes of the Circum-pacific region:
Circum-Pacific-Council for Energy and Mineral Resources. Earth Sciences
Series, 1: 565-581.
Damm,
K.W., Pichowiak, S. and Todt, W. 1986. Geochemie, Petrologie und Geochronologie
der Plutonite und des Metamorphen Grundgebirges in Nordchile. Berliner
Geowissenchaften Abhandlungen (A), 66: 73-146.
Damm,
K.W., Pichowiak, S., Harmon, R.S., Todt, W., Kelley, S., Omarini, R. and
Niemeyer, H., 1990. Pre-Mesozoic evolution of the Central Andes; the basement
revisited, in Mahlburg Kay, S. and Rapela, C.W. (Eds.). Plutonism from
Antarctica to Alaska: Geological Society of America Special Paper, 241:
101-126.
Davidson,
J., Mpodozis, C. and Rivano, S. 1983. El Paleozoico de la sierra de Almeida, al oeste de
Monturaqui, Alta Cordillera de Antofagasta, Chile. Revista Geológica de
Chile, 12: 3-23.
Galliski,
M. 1983. Distrito minero El Quemado, departamentos La Poma y Cachi, provincia de
Salta. I: El basamento del tramo septentrional de la Sierra de Cachi. Revista
Asociación Geológica Argentina, 38: 209-224.
Galliski,
M. y Miller, C., 1989. Petrogénesis de las trondhjemitas de Cachi:
Condicionamientos impuestos por elementos de Tierras Raras e Implicancias Tectónicas.
Actas Reunión Geotransectas de América del Sur, 58-62.
González
Bonorino, F., 1950. Algunos problemas geológicos de las Sierras Pampeanas. Revista
Asociación Geológica Argentina. 5(3):81-110.
Knüver,
M. 1983. Dataciones radimétricas de rocas plutónicas y metamórficas. Münstersche
Forschungen zur Geologie und Paläontologie.
59:201-218.
Koukharsky,
M. 1988. Geología de
la Puna en la región que media entre el cerro Socompa y el cerro Tul Tul,
provincia de Salta. Tesis Doctoral, nº 2166, Facultad de Ciencias Exactas y
Naturales. Universidad de Buenos Aires, 1-91 (inédito).
Koukharsky,
M., and Lanés, S. 1994. Las
rocas graníticas paleozoicos de la sierra de Taca Taca, Puna Salteña (24º10´-
24º30´S) Argentina. VII Congreso Geológico Chileno, Actas II:
1071-1075.
Koukharsky,
M., Quenardelle, S., Litvak, V.D., Page, S., and Maisonnave, E.B. 2002. Plutonismo
del Ordovícico inferior en el sector norte de la sierra de Macón, provincia de
Salta. Revista Asociación Geológica Argentina, 57(2): 173-181.
Linares,
E. and Gónzalez, R., 1990. Catálogo de edades radimétricas de la República
Argentina 1957-1987. Asociación Geológica Argentina. Serie B (Didáctica y
Complementaria) Nº 19, 628 pág.
Lork,
A. and Balhburg, H., 1993. Precise U-Pb ages of monazites from the Faja Eruptiva
de la Puna Oriental and the Cordillera Oriental, NW Argentina. 12º
Congreso Geológico Argentina- II Congreso de Exploración de Hidrocarburos, 4:
1-6.
Llambías,
E., and Caminos, R. 1986.El magmatismo neopaleozoico de la Argentina. En el
sistema Carbonífero en la República Argentina (síntesis). Archangelsky, S. Subcomision on
Carboniferous stratigraphy, 239-246.
Lork,
A., Miller, H. y Kramm, U., 1989. U-Pb zircon and monazite ages of the La
Angostura granite and the orogenic history of the northwest Argentine basement. Journal
of South American Earth Sciences 2: 147-153.
Loske,
W. y Miller, H., 1996. Sistemática U-Pb de circones del granito de Ñuñorco-Sañogasta.
In: Aceñolaza, F.G., Miller, H. Y Toselli, A.J. Geología del Sistema de
Famatina. Münchner
Geologische Hefte, 19 (Reihe A): 221-227.
Lucassen,
F., Becchio, R., Wilke, H.G., Franz, G., Thirlwall, M.F., Viramonte, J., Wemmer,
K., 2000. Proterozoic- Paleozoic development of the basement of the Central
Andes (18-26ºS) – a mobile belt of the South American craton. Journal of
South American Earth Sciences 13:697-715.
Méndez,
V.-, Navarini, A., Plaza, D. and Viera, V., 1973. Faja Eruptiva de la Puna
Oriental. Actas del Quinto Congreso Geológico Argentina. Tomo IV:89-100.
Méndez,
V. 1974. Estructuras de las provincias de Salta y Jujuy a partir del meridiano
65º30´ oeste, hasta el límite con la República de Bolivia y Chile. Revista
Asociación Geológica Argentina, XXIX (4): 391-424.
Miller,
C., Pankhurst, R., Rapela, C., Saavedra. J. and Toselli, A., 1991. Génesis
de los granitoides paleozoicos peraluminosos, áreas Tafí del Valle y Cafayate,
Sierras Pampeanas, Argentina. Actas 6º Congreso Geológico Chileno,
Volumen 1: 36-39.
Miller,
H. 1999. Basement geochronology of the Pampean Ranges and neighboring regions.
State of the art research and ways to the future. Actas II South American
Symposium on Isotope Geology (IISSAGI). 566-573.
Miyashiro,
A. 1994. Metamorphic Petrology. 404 pág. UCL Press.
Moya,
C. and Salfity, J., 1982. Los
Ciclos Magmáticos en el Noroeste Argentino. Actas 5º Congreso
Latinoamericano de Geología, III:523-526.
Mpodozis,
C., Herve, J., Davidson, J. and Rivano, S. 1983. Los granitoides de Cerros Lila, manifestaciones de
un episodio intrusivo y termal del Paleozoico inferior de Los Andes del norte de
Chile. Revista Geológica de Chile, 18: 3-14.
Oyarzabal,
F., 1988. Geología del Basamento Cristalino del Extremo Noreste de la Sierra de
Quilmes, Salta. Tesis Doctoral (inédita). Facultad Ciencias Naturales e
Instituto Miguel Lillo, Universidad Nacional de Tucumán.
Pankhurst,
R.J. y Rapela, C.W., 1998. The proto-Andean margin of Gondwana: an introduction.
In: Pankhurst, R.J. y Rapela, C.W. (Ed.). The Proto-Andean Margin of Gondwana. Geological
Society Special Publication Nº 142, 1-10.
Pontoriero,
S., Castro de Machuca, B., Conte-Grand, A. 2001. Caracterización petrográfica
y geoquímica de los granitos del borde oriental de la Sierra de La Huerta,
provincia de San Juan. XI Congreso Latinoamericano y III Congreso Uruguayo de
Geología. Publicación Nº 63 en CD.
Quenardelle, S., 1989.
Características petrológicas y geoquímicas del basamento en el sector
oriental del Salar del Hombre Muerto, Puna Argentina. Tesis Doctoral (inédita).
Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires.
Ramos,
V., 1988. Late Proterozoic-Early Paleozoic of South America: a collisional
history. Episodes, 11: 168-174.
Ramos,
V., Dallmeyer, D., and Vujovich, G. 1998. Time constraints on the Early
Paleozoic docking of the Precordillera, central Argentina. In: Pankhurst, R. J.
y Rapela, C.W. (Eds.) The Proto-Andean Margin of Gondwana. The Geological
Society. Special Publications, 142:283-295.
Ramos,
V., 2000. The Southern Central Andes. In, Cordani, U.G., Milani, E.J., Thomaz
Filho, A., Campos, D.A. Tectonic Evolution of South America. P. 561-604. 31st.
International Geological Congress.
Rapela,
C.W., 1976. Las rocas granitoides de la región de Cafayate, provincia de Salta.
Aspectos petrológicos y geoquímicos. Revista Asociación Geológica
Argentina. 31(4):260-278.
Rapela,
C.W., Heaman, L.M. and McNutt, R., 1982. Rb-Sr geochronology of granitoid rocks
from the Pampean Ranges, Argentina. Journal of Geology, 90 (5):574-582.
Rapela,
C.W., Pankhurst, R.J., Dahlquist, J, y Fanning, C.M., 1999b. U-Pb SHRIMP ages of
Famatinian Granites: New constraints on the timing, origin and tectonic setting
of I-and S-type magmas in an ensialic arc. Actas II South American Symposium
on Isotope Geology (IISAGI). 264-267.
Rapela,
C.W., Coira, B., Toselli, A. and Saavedra, J., 1992. The lower Paleozoic
magmatism of southwestern Gondwana and the evolution of the Famatinian orogen. International
Geology Review, 34: 1081-1142.
Rapela,
C.W., Pankhurst, R.J., Baldo, E., Casquet, C., Galindo, C., Fanning, C.M.,
Saavedra, J. 2001. Ordovician metamorphism in the Sierras Pampeanas: New U-Pb
SHRIMP ages in Central-East Valle Fértil and the Velasco Batholith. III
Simposio Sudamericano de Geología Isotópica (III SSAGI). Publicación en CD-ROM.
Rossi
de Toselli, J., Toselli, A., Indri, D., Saavedra, J. and Pellitero, E. 1985.
Petrología y geoquímica de plutones fuertemente peraluminosos de las Sierras
Pampeanas: El problema de los granitos cordieríticos. Revista Asociación
Argentina de Mineralogía, Petrología y Sedimentología (AMPS) 16 (1-4):55-64.
Rossi
de Toselli, J.N., Toselli, A.J. and Wagner, S. 1991. Geobarometría
de hornblendas en granitoides calcoalcalinos : Sistema de Famatina, Argentina. 6to
Congreso Geológico Chileno, Actas. Vol. I : 244-247.
Rossi,
J.N., Toselli, A. J. and Durand, F.R. 1992. Metamorfismo de baja presión, su relación con el
desarrollo de la Cuenca Puncoviscana, plutonismo y régimen tectónico.
Argentina. Estudios Geológicos, 48 (5-6): 279-287.
Rossi,
J.N., Toselli, A.J., Durand, F.R., Saravia, J., Sardi, F., 1997. Significado
geotectónico de corneanas piroxénicas en granitos de las sierras de Paimán,
Velasco y Famatina, provincia de La Rioja, Argentina. VIII Congreso Geológico
Chileno, II: 1498-1501.
Rossi,
J.N., Toselli, A.J., Saavedra, J., Sial, A.N., Pellitero, E. y Ferreira, V.P.
2002. Common
Crustal Source for Contrasting Peraluminous Facies in the Early Paleozoic
Capillitas Batholith, NW Argentina. Gondwana Research, 5(2) : 325-337.
Kochi.
Rubiolo,
D., Cisterna, C., Villeneuve, M., Hickson, C. 2002. Edad U/Pb del granito de Las
Angosturas en la Sierra de Narváez (Sistema de Famatina, provincia de
Catamarca). En : Cabaleri, N., Cingolani, C.A., Linares, E., López de Luchi,
M.G., Ostera, H.A. y Panarello, H.O. (Eds.) Actas del XV Congreso Geológico
Argentina CD-ROM. Artículo Nº 411, 4 pp.
Ruiz,
F., Introcaso, A., Uliarte, E., 2001. Estudio gravi-magnetométrico en la sección
andina 20º lat. sur. VII
International Congress of the Brazilian Geophysical Society. PS4:762-766.
Salvador, Bahia.
Saal,
A., 1993. El basamento cristalino de la Sierra de Paganzo, provincia de La
Rioja, Argentina. Tesis Doctoral (inédita). Universidad Nacional de Córdoba.
Saavedra,
J., Pellitero Pascual, E., Rossi, J.N. y Toselli, A.J., 1992. Magmatic
evolution of the Cerro Toro granite, a complex Ordovician pluton of northwestern
Argentina. Journal of South America Earth Sciences. 5(1):
21-32.
Sales
de López, A., López, J.P., Petronilho, L., Kawashita, K. 1997. Combined 87Rb/84Sr spike:
Calibration and application to datation of Loma Pelada Granite, Tucumán,
Argentina. Simposio
Sulamericano de Geologia Isotopica (SSAGI), Actas: 278-279.
Schalamuk,
I., Toselli, A.J., Saavedra, J., Echeveste, H., and Fernandez, R., 1989. Geología
y mineralización del sector este de la Sierra de Mazán, La Rioja, Argentina. Revista
de la Asociación Argentina de Mineralogía, Petrología y Sedimentología
(AMPS), 20 (1-4): 1-12. B
Schön,
C. y Miller, H. 1990. Desarrollo bifásico del complejo intrusivo del SW de
Cachi, provincia de Salta, NW argentino. XI Congreso Geológico Argentino.
Acta 1:145-149. S
Sial,
A.N., Toselli, A.J., Saavedra, J., Parada, M.A. Ferreira, V.P. 1999. Emplacement,
petrological and magnetic susceptibility characteristics of diverse magmatic
epidote-bearing granitoid rocks in Brazil, Argentina and Chile. Lithos
46: 367-392.
Toselli,
A., Dalla Salda, L. y Caminos, R. 1992. Evolución Metamórfica y Tectónica del
Paleozoico Inferior de Argentina. In Gutierrez Marco, J. C., Saavedra J. y Rábano,
I. (Ed.) Paleozoico Inferior de Ibero-América, 279-310. Universidad de
Extremadura.
Toselli,
A., Rossi de Toselli, J., Saavedra, J. y Pellitero, E., 1989. Granitoids of the Tafi
Megafracture (Sierras Pampeanas, Argentina): Petrogenetic Implications. Journal
of South American Earth Sciences, vol. 2 (2): 199-204.
Toselli,
A.J. y Rossi, J.N., Sial, A.N. y Ferreira, V.P. 2001. Terrenos metamórficos y
granitos Eopaleozoicos del NW Argentina indicadores geotectónicos del borde
occidental de Gondwana. XI Congreso Latinoamericano y III Congreso Uruguayo
de Geología. Trabajo 182. CD-ROM.
Toselli,
A.J., Durand, F.R., Rossi de Toselli, J.N., Saavedra, J., Sial, A.N., 1996a.
Granitos peraluminosos de la Zona Batolítica Central de Sierras Pampeanas (NW
Argentino): Relaciones y significado geotectónico. Memorias del XII Congreso
Geológico de Bolivia, T.II:755-768.
Toselli,
A.J., Durand, F.R., Rossi de Toselli, J.N., Saavedra, J., 1996b. Esquema de
evolución geotectónica y magmática Eopaleozoica del Sistema de Famatina y
sectores de Sierras Pampeanas. Actas XIII Congreso Geológico Argentino y III
Congreso de Exploración de Hidrocarburos. Vol. V:443-462.
Toselli,
A.J., Sial, A.N., Saavedra, J., Rossi, J.N., y Ferreira, V.P., 1996c. The
Famatinian Peraluminous Capillitas Batholith, Argentina: Genesis by
Collision-Related Crustal Anatexis. Actas XIII Congreso Geológico Argentino y III Congreso de
Exploración de Hidrocarburos. Vol. V:463-464.
Toselli,G.,
1975. Contribución al
conocimiento geológico de la región de Volcancito, Sierra de Famatina,
provincia de La Rioja. Tesis Doctoral inédita. Universidad Nacional de Córdoba.
Turner,
J.C., 1961. Estratigrafía
del Nevado de Cachi y sector oeste (Salta). Acta Geológica Lilloana, 3:
191-226.
Turner,
J.C., 1971. Descripción
de la hoja geológica 15d, Famatina, provincia de La Rioja. Dirección
Nacional de Geología y Minería. Boletín
126.
Turner,
J.C.M., and Mendez, V. 1979. Puna. In: Segundo Simposio de Geología Regional Argentina. Academia
Nacional de Ciencias de Córdoba, 1: 13-56.
Varela,
R., Roverano, D. y Sato, A.M., 2000. Granito El Peñón, sierra de Umango:
descripción, edad Rb/Sr e implicancias geotectónicas. Nota breve. Revista
de la Asociación Geológica Argentina, 55(4):407-413.
Voss,
R., Görler, R., Kraemer, B., and Van den Boogaard, P. 1996. Neue Daten zur Paläozoischen
und Mesozoischen Paläogeographie in der Südlichen Puna (NW Argentinien). Terra
Nostra, 8: 1-147.
Zappettini,
E., 1990. Geología y Metalogénesis de la Puna Oriental entre los 23º y 23º45´de
latitud sur, provincias de Jujuy y Salta, República Argentina. En:
Contribuciones al conocimiento de la Mineralogía y Geología Económica de la
República Argentina. Asociación Argentina de Geólogos Economistas.
Publicación Especial, 120-127.
Zappettini,
E., Blasco, G., and Villar, L. 1994. Geología del extremo sur del Salar de
Pocitos, provincia de Salta, República Argentina. Actas 7º Congreso Geológico
Chileno, 1: 220-224.
Recibido:
10 de Septiembre de 2002
Aceptado: 7 de Noviembre de 2002