The
Ordovician of Sierra de San Luis: Famatinian Magmatic Arc and Low to High-Grade
Metamorphism
Ana María SATO1, Pablo D. GONZÁLEZ1 and Eduardo J. LLAMBÍAS1
1 Centro de Investigaciones Geológicas – Universidad Nacional de La Plata. Calle 1 N° 644, 1900 – La Plata, Argentina. E-mail: sato@cig.museo.unlp.edu.ar
Abstract
: THE ORDOVICIAN OF SIERRA DE SAN LUIS: FAMATINIAN
MAGMATIC ARC AND LOW TO HIGH-GRADE METAMORPHISM. The main features of the
Sierra de San Luis basement were delineated during the Ordovician Famatinian
orogeny, that involved the active SW Gondwana margin. The metamorphic and
sedimentary rocks formed during previous processes (Pampean orogeny?) were
affected by arc magmatism, NNE-SSW penetrative deformation, and low to
high-grade regional metamorphism. Available isotopic data constrain the arc
magmatism (pre- and synorogenic granitoids) between Middle Cambrian and late
Ordovician.
Regional
metamorphism occurred at variable crustal levels, associated with compressive
deformation. The highgrade metamorphism was of Barrovian-type, with P-T
conditions mostly in the range 5 - 7.5 Kb and 518° - 770°C. The duration of
metamorphism was apparently longer for the high-grade (early to late Ordovician)
than for the low-grade rocks (Middle to late Ordovician). After the main
Ordovician events, the outlasting compression produced ductile shear zones and a
thickened crust, that favored the production of postorogenic granitoids.
Along
the collision-related Famatinian orogen of Sierras Pampeanas, the analysis of
metamorphic conditions suggests that the compressive regime associated with
terrane accretion was variable.
Resumen
: EL ORDOVÍCICO
DE LA SIERRA DE SAN LUIS: ARCO MAGMÁTICO FAMATINIANO Y METAMORFISMO DE BAJO A
ALTO GRADO.- Las características más sobresalientes del basamento de la
Sierra de San Luis fueron delineadas durante la orogenia Famatiniana del Ordovícico,
que involucró al margen SO activo de Gondwana. Las rocas metamórficas y
sedimentarias formadas durante los procesos previos (orogenia Pampeana?) fueron
afectadas por un magmatismo de arco, una penetrativa deformación NNE-SSO y un
metamorfismo regional variable de bajo a alto grado. Los datos isotópicos
disponibles sugieren la actividad del arco magmático (granitoides pre- y
sinorogénicos) entre el Cámbrico Medio y el Ordovícico tardío. El
metamorfismo regional asociado a la deformación compresiva se produjo en
niveles corticales variables. El metamorfismo de alto grado fue de tipo
Barroviano, y sus condiciones P-T estuvieron mayormente en el rango 5 - 7.5 Kb y
518° - 770°C. El tiempo de duración del metamorfismo fue aparentemente mayor
para las rocas de alto grado (Ordovícico Temprano a Tardío), que para las de
bajo grado (Ordovícico Medio a tardío). Con posterioridad a los eventos
mayores del Ordovícico, el efecto compresivo residual dio origen a zonas de
cizalla dúctil y a una corteza engrosada, que facilitó la producción de
granitoides posorogénicos. A lo largo del orógeno colisional Famatiniano de
las Sierras Pampeanas, el análisis de las condiciones metamórficas sugieren
que fue variable el régimen compresivo asociado a la acreción de terreno.
Key
words: Famatinian orogeny. Sierras
Pampeanas. Ordovician. Regional metamorphism.
Palabras
clave: Orogenia Famatiniana. Sierras Pampeanas. Ordovícico.
metamorfismo regional.
Introduction
Different
proposals concerning Early Paleozoic geodynamic evolution of the Sierras
Pampeanas and surrounding regions coincide that the Famatinian orogeny folows a
collision model.
The
most important tectono-magmatic processes related to this collision (e.g. Dalla
Salda et al., 1992, 1998; Ramos et al., 1998; Astini, 1998;
Pankhurst et al., 2000; Casquet et al., 2001) occurred during the
Ordovician times, giving rise to the N-S belt of the Famatinian orogen. Within
this collisional scheme, a Laurentian-derived terrane was accreted to the
southwestern margin of Gondwana, and the Sierra de San Luis represents the locus
of the magmatic arc, emplaced within a metamorphic environment that reached
upper amphibolite facies. These features are consistent with the inner position
of the Sierra de San Luis respect to the suture zone, where higher pressure
metamorphism and deeper levels of arc magmatism (Baldo et al., 2001;
Casquet et al., 2001; Castro de Machuca et al, 1996 ; Vujovich et al.,
1996) are exposed.
The
Sierra de San Luis is located in the southern part of the Eastern Sierras
Pampeanas (Caminos, 1979), and the basement rocks evolved prior to the Upper
Carboniferous – Permian sedimentary cover (Hünicken et al., 1981). The
penetrative NNE-SSW Ordovician deformation and metamorphism (Barrovian type)
overprinted the older geological features, making difficult the interpretation
of previous histories. These old processes were attributed to the late
Precambrian – early Cambrian Pampean cycle (Criado Roqué et al., 1981;
Kilmurray and Dalla Salda, 1977; von Gosen et al., 2002) or even older
events, as suggested by Sato et al. (2001b). After the main Ordovician
orogeneny, the Sierra de San Luis was only subjected to localized shear zone
deformation (and metamorphism), and post-orogenic (transitional to anorogenic)
magmatism, that took place mainly during Devonian to early Carboniferous.
In
this review we will focus the descriptions on the tectonic, metamorphic and
magmatic events that occurred mainly during the Ordovician, in order to make
regional interpretations. The timing of the events are constrained by isotopic
ages of the igneous rocks, and less accurately by those of the metamorphic
rocks. Former geological studies on Sierra de San Luis include those of
Kilmurray and Villar (1981), Dalla Salda (1987), Ortiz Suarez et al. (1992),
von Gosen and Prozzi (1998),
Llambías et al. (1998), Sims et al. (1997, 1998); Ortiz Suárez
(1999), Hauzenberger et al. (2001), among others. The
compilation of the map of the Sierra de San Luis (Fig. 1) is based on the
previous literature and the observations of the authors, and the metamorphic
units are defined according to characteristics on lithology, structure,
metamorphic grade and protolith. In order to differentiate the penetrative
“Famatinian” (NNE-SSW) deformation from the “pre-Famatinian” (NW-SE)
relict deformation, the subscripts “F” and “pF” will be used for the
fabric descriptions.
Metamorphic
complexes
Low
and high-grade metamorphic complexes are in contact mainly by tectonic
relationships, with development of N-S to NNE-SSW trending shear zones. These
zones consist of protomylonites, mylonites, ultramylonites and phyllonites of
low to high grades, that develop through several kilometers of length and tens
of meters in width. Less frequently, the limits between the metamorphic units
are transitional, especially among those of the lowest metamorphic grades.
The San Luis Formation - SLF - (Prozzi and Ramos, 1988; Prozzi, 1990) or Phyllite Group (von Gosen and Prozzi, 1996) is exposed in two belts of the central and western parts of the Sierra de San Luis. It consists of alternating phyllites and meta-quartzites with minor meta-conglomerates (Conglomerado Cañada Honda, Prozzi, 1990) and acid meta-magmatic rocks, interpreted as extrusive (Brodtkorb et al., 1984; Fernández et al., 1991) or intrusive (von Gosen and Prozzi, 1996; von Gosen, 1998a) rocks. The succession was characterized as a turbiditic sequence, and compared with the Upper Proterozoic to Lower Cambrian Puncoviscana Formation of the Northwestern Argenti-
Figura
1. Geological map of the Sierra de San Luis, compiled and
adapted after Ortiz Suárez et al. (1992), Sims et al.(1997),
Llambías et al.(1998), von Gosen and Prozzi (1998), and own
observations.
na
(Prozzi, 1990; von Gosen and Prozzi, 1998). This regional comparison was later
supported by the U-Pb crystallization age of 529 ± 12 Ma obtained from two
meta-magmatic layers (Söllner et al., 2000). The SLF is affected by a
regional compressive D1 F deformation,
resulting in a tight to isoclinal, upright to inclined F1
F folds with NNE-SSW trending axes (Sims et al.,
1997; von Gosen and Prozzi, 1996, 1998; von Gosen 1998a, 1998b), associated with
a penetrative axial-plane S1 F slaty
cleavage. The metamorphic grade related to this deformation is low to middle
greenschist facies. A second deformation event, refolding the F1
F folds,
and associated with S2 F crenulation cleavage, is
registered only at few localities (Sims et al., 1997; von Gosen and
Prozzi, 1996, 1998; von Gosen 1998a, 1998b). Low pressure - high temperature
metamorphic aureoles surround the pre-orogenic intrusive plutons and are both
deformed together.
Although
there is no direct isotopic dating for the regional metamorphism, the U-Pb ages
of the pre-orogenic plutons give a maximum limit at early Ordovician for the
metamorphism of the SLF.
The
Micaschist Group - MG - (von Gosen and Prozzi,
1996) accompanies the SLF along the western and eastern borders of the central
belt of this unit (Fig. 1), and a continuous structural and metamorphic
gradation is mentioned among them (von Gosen and Prozzi, 1998). However, in the
contact zone between the SLF and the eastern strip of the MG, a broad (up to 3
km wide) ductile shear zone was identified (Río Guzmán shear zone, Sims et
al., 1997). To the west, two additional strips of MG are exposed: along the
eastern margin of the La Escalerilla pluton and to the east of the Nogolí
Metamorphic Complex. The protolith of this meta-clastic succession was
characterized as a flysch-like sequence - comparable to that of the SLF (and
also to the Puncoviscana Formation) - and hence as a higher metamorphic
equivalent of the SLF (von Gosen, 1998a, 1998b). In the eastern margin of La
Escalerilla Pluton, the MG is composed of an alternating succession of
biotite-muscovite schists and metaquartzites, with pegmatites and few layers of
amphibolites (von Gosen and Prozzi, 1996, 1998; von Gosen, 1998a, 1998b). Local
migmatites are mentioned by von Gosen (1998a). The MG is affected by at least
two deformational events (see details in von Gosen, 1998a). D1
F deformation is related to the folding of the clastic
sequence into various types of F1 F folds
(associated with a penetrative NNE-SSW trending S1
F foliation),
equivalent to those of the SLF. D2 F deformation
here is more widespread than in the SLF. S2
F axial
plane cleavage developed in relation to small to large scale F2
F open anticline – syncline structures (with local
crenulation and kink folds of m-scale). The metamorphic conditions during D1
F deformation reached the middle greenschist facies with
local amphibolite facies, and continued through D2
F deformation
(von Gosen, 1998a).
The
MG strip along the eastern margin of the Nogolí Metamorphic Complex consists of
biotite-muscovite-garnet schists and biotite-muscovite-staurolite-garnet (±
kyanite) schists, with minor meta-quartzites (González, 2000a). Fabrics are
comparable to the D1 F - D2
F deformations of the MG of the central part of the
Sierra de San Luis, and the metamorphic overprint is of the highest grade
reported for the MG within the entire Sierra, increasing from middle greenschist
facies during D1 F up
to middle amphibolite facies at D2 F.
Ar-Ar
muscovite data from the Río Guzmán shear zone yielded a rising age pattern
between 351 and 362 Ma (Sims et al., 1998).
The
Nogolí Metamorphic Complex - NMC - (Sims et al., 1997)
is exposed in the westernmost part of the Sierra de San Luis (Fig. 1), and was
also referred as Western Basement Complex (von Gosen and Prozzi, 1998). It is
juxtaposed to the SLF and the MG along a regional scale ductile shear zone (El
Realito - Río de la Quebrada shear zone), where granitoid plutons are emplaced.
The NMC is composed of micaschists, meta-quartzites, paragneisses and
migmatites, with minor orthoamphibolites, komatiites to high-Fe tholeiitic
basalts, marbles, calcsilicates and banded iron formation (Ortiz Suárez, 1999;
González, 2000a; González et al., 2002a). Two sets of structural
orientations were identified (González and Llambías, 1998; von Gosen and
Prozzi, 1998; González et al., 2002a): (1) Remnant NW-SE trending
structures (S0
pF to S3 pF)
attributed to pre-Famatinian events. (2) Penetrative NNE-SSW trending structures
ascribed to the Famatinian events. The pre- Famatinian deformational events are
complex and their timing is not yet well defined. These older fabrics do not
appear in the SLF and MG, but are recognized in the Pringles and Conlara
Metamorphic Complexes. Within the NMC, the multiply deformed relics of the NW-SE
fabric were re-folded and re-orientated to the NNE-SSW Famatinian trend of
strike, and the high-grade metamorphic rocks (amphibolite plus local granulite
facies) were re-metamorphosed to a new amphibolite facies. The PT conditions of
Famatinian metamorphism were assessed using several geothermometers and
geobarometers (González, unpublished data) and were determined in various rock
types. The obtained data are 518° - 612°C and 5 - 7 Kb for a
sillimanite-garnet paragneiss, 636° - 760°C and ~5 Kb for biotite
amphibolites, 589° - 633°C and 6.8 - 7.2 ± 0.4 Kb for garnet amphibolites and
652° - 688°C and 7.3 - 7.5 ± 0.4 Kb in garnet-clinopyroxene amphibolites. The
Famatinian evolution of the NMC was accompanied with several NNE-SSW trending, E
or W dipping low to high grade shear zone development, that continued up to
Devonian times.
The
deposition of the original volcanic-sedimentary sequence and its structural and
metamorphic evolution started at some pre-Famatinian times and continued through
the Famatinian events (Sims et al., 1997; González and Llambías, 1998;
von Gosen and Prozzi, 1998; González et al., 2002a). The presence of BIF
and komatiites whitin the same sequence, and the Early Mesoproterozoic Sm-Nd
isochron date of the mafic to ultramafic rocks (Sato et al., 2001b) might
be evidences supporting the existence of Precambrian protoliths in the Sierras
de San Luis.
Scarce
age constraints on the Ordovician metamorphism include monazite datings by
conventional U-Pb (458 ± 3 Ma) and chemical Th-U-Pb (470 ± 15 Ma) methods for
the same sillimanite-garnet paragneiss used for P-T calculations, Sm-Nd whole
rock and mineral isochron (445 ± 21 Ma) and Ar-Ar plateau ages (476 to 457 Ma,
amphiboles) from amphibolites (González et al., 2002a). Another K-Ar
amphibole date comes from an amphibolite of this western region, with 452 ± 23
Ma (Ortiz Suárez, 1999).
Ductile
shear zones are particularly conspicuous within this complex (Fig. 1), and their
relationships with the post-orogenic plutons suggest their long-lasting activity
accompanied with retrogression, through Ordovician to Devonian times. From the
area of Nogolí, K-Ar dates between 414 and 364 Ma were obtained from mylonite
zone biotites (Sato et al., 2001a, and unpublished data of the authors).
The
Pringles Metamorphic Complex - PMC - (Sims et al., 1997)
is partly equivalent to the Eastern Basement Complex of von Gosen and Prozzi
(1998). It is exposed in the central part of the Sierra de San Luis between two
belts of the MG (Fig. 1). To the west, the PMC is juxtaposed to the MG along a
mylonite zone steeply inclined to the east, whereas the eastern boundary is
masked by granite and pegmatite intrusions (von Gosen and Prozzi, 1998). The PMC
is composed of pelitic and psammitic schists and gneisses with
sillimanite-garnet-biotite assemblage (± cordierite ± spinel), orthogneisses
and minor meta-quartzites, amphibolites and calcsilicates. All these rocks are
weakly to densely injected by granitic, pegmatitic and aplitic veins and dykes
on different scales (Sims et al., 1997; von Gosen and Prozzi, 1998). The
main structures are tight F2 F folds
associated with N-S to NNE-SSW trending and steeply inclined to subvertical S2
F foliation overprinted to an older fabric probably
comparable to the pre-Famatinian structures of NMC (von Gosen and Prozzi, 1998).
According
to these authors, prior to and after the compresive D2
F event,
the rocks were migmatized by granitic melts, and then affected by a F3
F folding. Prograde amphibolite facies metamorphism
accompanied the D2 F - D3
F events
(Sims et al., 1997, 1998; von Gosen and Prozzi, 1998). Peak granulite
metamorphic conditions are recorded within the thermal aureole of the mafic to
ultramafic intrusions (see below, Igneous Activity), particularly in the Virorco
and Las Aguilas areas (González Bonorino, 1961; Sims et al., 1997;
Hauzenberger et al., 2001). Ductile shearing affected the metamorphic and
mafic to ultramafic rocks at retrograde amphibolite to greenschist facies
conditions (Hauzenberger et al., 2001; Brogioni and Ribot, 1994). Three
metamorphic stages were quantified by Hauzenberger et al. (2001), at 570°
– 600°C and 5 – 5.7 Kb, 740° – 790°C and 5.7 – 6.4 Kb, and 590° –
650°C and 5.4 – 6.0 Kb, respectively for regional metamorphism, local aureole
metamorphism, and metamorphism associated with shearing. The regional N-S
trending ductile shear zone, affecting the belt of the mafic to ultramafic rocks
and extending along more than 100 km, was identified as the La Arenilla mylonite
zone (Ortiz Suárez et al., 1992), and described by von Gosen and Prozzi
(1998).
Close
to the eastern border of the northern segment of this mylonite zone, P-T
conditions of 525° - 774°C and 3.7 - 7.6 Kb (garnet amphibolites) and 650° -
774°C and 5.0 - 9.5 Kb (biotite-garnet gneiss) were computed within the PMC by
Ortiz Suárez (1999), and related to peak stages of Famatinian metamorphism.
The
U-Pb SHRIMP data of 460 – 450 Ma from zircon rims and monazites from the
garnet sillimanite gneiss of the PMC were interpreted as the timing of the
regional metamorphism (Sims et al., 1998). These dates are perhaps
documenting the retrograde rather than the prograde stage of metamorphism,
because of the difficulty in dating the prograde high-grade metamorphism (Foster
et al., 2000). Zircon core dates with peak distribution through
Neoproterozoic to early Cambrian were considered as representing the Pampean
processes in the source region. Another K-Ar amphibole date from an amphibolite
of the PMC is 466 ± 23 Ma (Ortiz Suárez, 1999). The rocks affected by the La
Arenilla mylonite zone yielded moscovite Ar-Ar dates of 366 ± 2 Ma in the
central part and 375 ± 1 Ma in the southern part of the Sierra (Sims et al.,
1998).
The
Conlara Metamorphic Complex - CMC - (Sims et al., 1997)
is exposed in the eastern part of the Sierra de San Luis (Fig. 1), and includes
the Las Aguadas Metamorphic Complex described by Ortiz Suárez (1988) in the
northeastern region. von Gosen and Prozzi (1998) suggested a continuous
structural and metamorphic gradation from the MG. The CMC consists of pelitic
and psammitic biotite-muscovite-garnet-sillimanite (± tourmaline ± chlorite)
schists and pelitic and psammitic biotite (± garnet ± sillimanite) gneisses.
These rocks show a metamorphic differentiation layering and various generations
of granitic to pegmatitic injections, allowing local migmatite formation.
Minor
amphibolites, marbles and calcsilicates are also mentioned (Llambías and
Malvicini, 1982; Delakowitz et al., 1991, Brodtkorb and Pezzutti, 1991).
At least two deformational events were identified within the CMC (Kilmurray,
1981, 1982; Kilmurray and Dalla Salda, 1977; Ortiz Suárez, 1988; Ortiz Suárez
and Sosa, 1991; Sims et al., 1997; Llaneza and Ortiz Suárez, 2000). D1
deformation is related to the symmetric to asymmetric F1 folding with E-W to NW-SE trending
axis, associated with a non-penetrative S1
schistosity
variably dipping to the north or south (Kilmurray, 1981, 1982; Kilmurray and
Dalla Salda, 1977). This orientation of D1 fabric
elements is comparable to the S0 pF -
S3
pF of the NMC in the western region. The penetrative D2
F deformation refolded the F1
folds
around tight F2 F folds with N-S to NNE-SSW trending
axis, whereas S1 was
crenulated by NNESSW trending, steeply E or W dipping S2
F foliation
(Kilmurray, 1981, 1982; Kilmurray and Dalla Salda, 1977; Ortiz Suárez, 1988;
Llaneza and Ortiz Suárez, 2000). Open F3
F folds
with NE-SW trending axis is then restricted to localized areas near fractures
(Ortiz Suárez, 1988). Peak metamorphic overprints reached amphibolite facies
conditions during the D1 deformational
event, whereas D2 F was accompanied with
retrogression at greenschist facies (Kilmurray, 1981, 1982; Sims et al.,
1997).
Available
K-Ar Ordovician and Siluro-Devonian dates from this complex (455-410 Ma, Llambías
and Malvicini, 1982; 430-397 Ma, López de Luchi et al., 2002) are
difficult to interpret in relation to peak metamorphism and subsequent shearing
or cooling processes.
Igneous
activity
The
metamorphic complexes of the Sierra de San Luis were affected by felsic and
mafic to ultramafic plutonism, as well as by mafic to ultramafic volcanism.
Felsic magmatic rocks emplaced at different stages during the Famatinian
orogenic cycle were defined as pre-, syn-, and post-orogenic granitoids, with
respect to the main Ordovician deformation event (Llambías et al., 1998;
see also Llambías et al., 1991 and Ortiz Suárez et al., 1992).
The ages of the pre- and syn-orogenic granitoids range between Late Cambrian and
Middle Ordovician, whereas the post-orogenic group is mainly Devonian to Early
Carboniferous.
Felsic
Magmatic Rocks
The
pre-orogenic granitoids crop out mainly in the western
region of the Sierra, within the NMC, the SLF, in the transition between SLF and
MG, and along the NE-SW trending ductile shear zones that separate the NMC from
the SLF and MG (Fig. 1). The plutons share the penetrative deformation of the
country rocks, having intruded the already multiply deformed rocks of the NMC
(Llambías et al., 1996a) and also the still undeformed sedimentary rocks
of the SLF that were later transformed into phyllites (Sato et al., 1996;
von Gosen, 1998). According to the most abundant rock types, they were
classified into Tonalite and Granite Groups, and represent the arc magmatism
emplaced prior to the main Ordovician deformation (Llambías et al., 1998
and references there in). The Tonalite Group includes Bemberg, Las Verbenas,
Gasparillo, El Realito and Tamboreo plutons (Fig. 1). Medium-grained tonalites,
with diorite, quartz gabbro, granodiorite and monzogranite facies, have a
magmatic arc calc-alkaline signature (Sato et al., 1996). The primary
shapes of the plutons and their contact aureoles were modified by the subsequent
deformation and greenschist facies metamorphism, resulting in highly sheared
borders and heterogeneously foliated inner zones. U-Pb SHRIMP zircon ages from
El Tamboreo and Bemberg plutons indicates crystallization at 470 ± 5 Ma and 468
± 6 Ma respectively (Sims et al., 1998; Stuart-Smith et al.,
1999).
However,
a secondary peak at 496 ± 8 Ma in the SHRIMP data from Bemberg may be
interpreted as an alternative crystallization age, with varying degrees of Pb
loss at younger times (Stuart-Smith et al., 1999). This alternative can
be consistent with the Rb-Sr isochron age of 512 ± 16 Ma for the same pluton
(Sato et al., 1999).
The
Granite Group consists of a few granitic bodies that share the same structural
features as the Tonalite Group. Brogioni et al. (1994) described a NE-SW
elongated garnet-bearing monzogranite pluton intruded into the El Realito
tonalite and deformed together. The Río Quinto muscovitebiotite monzogranite is
composed of a few lens-like sheets, parallel to the country rock foliation, and
is cut by shear zones (Carugno Durán et al., 1992). The Río Claro
granodiorite comprises at least three N-S trending lens-shaped plutons,
elongated parallel to the foliation of the country rocks (Ortiz Suárez, 1999).
It truncates the multiply deformed rocks of the NMC, and both are then
heterogeneously sheared. The composition is mainly two mica and garnet-bearing
leucogranodiorite with minor transitions to monzogabbros and gabbros (González,
2000a). The Pantanos Negros granitoids share the same composition and structural
features as the El Realito and Río Claro plutons, and are also intruded into
the multiply deformed NMC, suggesting that they belong to the Granite Group
(González, 2000a). The 52 km long, monzogranitic to granodioritic La
Escalerilla pluton is the largest intrusive body, and its eastern margin is
dominated by a shear zone that juxtaposes it to the MG. At the western side, the
pluton intruded the still undeformed sedimentary rocks of SLF, the Las Verbenas
Tonalite and the multiply deformed NMC. The pluton was later deformed together
with all these country rocks (Llambías et al., 1998; von Gosen and
Prozzi, 1996, 1998; von Gosen, 1998b). The conventional U-Pb zircon ages of Río
Claro (490 ± 15 Ma) and La Escalerilla (507 ± 24 Ma) granites (von Gosen et
al., 2002) indicates that the Ordovician arc magmatism had already started
since late Cambrian times. For the Devonian (403 ± 6 Ma) U-Pb SHRIMP age
obtained from a porphyritic phase of the southernmost part of La Escalerilla
pluton (Sims et al., 1998; Stuart-Smith et al., 1999), von Gosen
et al (2002) suggest the possibility of representing a post-orogenic emplacement
within the pluton.
Another
metamorphosed small felsic intrusive, spatially related to the ultramafic Las
Aguilas intrusion (PMC) was dated at 484 ± 7 Ma (U-Pb SHRIMP, Sims et al.,
1998).
From
the Rodeo Viejo tonalite pluton, Ordovician K-Ar amphibole and biotite dates
were obtained (466 ± 23 Ma y 452 ± 23 Ma, Ulacco, 1997; Ortiz Suárez and
Ulacco, 1999). However, the non-deformed and discordant features of these
plutons (Ortiz Suárez, 1996) might suggest a postorogenic emplacement (Ortiz Suárez
and Ulacco, 1999).
The
syn-orogenic granitoids are located in the central part of
the Sierra de San Luis and are emplaced within PMC, MG and CMC (Fig. 1). The
plutons included in this group are Paso del Rey, Cruz de Caña, Río de la
Carpa, Cerros Largos, La Ciénaga, La Represa, La Tapera and La Florida (see
synthesis in Llambías et al., 1998). These plutons are composed of
garnet-biotite-muscovite granodiorites and granites, with minor biotite
tonalites, and are closely related in space and time with pegmatite dyke swarms.
The contacts are sharp and parallel to the country rock foliation, and the
plutons are often folded or boudinaged together. The edges are highly sheared in
most of them, with a strong mylonitic foliation that decreases in intensity
towards the inner parts of the bodies.
The
Rb-Sr isochron age of 454 ± 21 Ma from Paso del Rey to Río de la Carpa area
(Llambías et al., 1991) was taken as the best approximation to the
crystallization age, closely associated with the regional deformation. Other
Rb-Sr dates (485 ± 30 Ma and 460 ± 39 Ma) were mentioned by López de Luchi
(1987) and López de Luchi and Cerredo (2001) for the Tapera pluton. The U-Pb
conventional zircon data of 608 +26/-25 Ma recently obtained by von Gosen et
al. (2002) for the Paso del Rey granitoid must be analyzed with care,
because of the peraluminous and anatectic character of the granitoid (Llambías et
al., 1996b) and the possibility of inherited processes in it(e.g. Mezger and
Krogstad, 1997). The K-Ar biotite dates between 391 and 372 Ma from Paso del Rey
and Río de la Carpa granodiorites (Varela et al., 1994) may reflect
reset ages by ductile shear zone activity, rather than a very slow cooling rate.
The
post-orogenic granitoids (see synthesis in Llambias et
al., 1998) are emplaced throughout the Sierra, cutting the already
juxtaposed different metamorphic complexes and also some of the ductile shear
zones. The circular shapes and ring dykes, as well as the very high-K character
of many of them indicate transitions to an anorogenic environment. The El Molle
and Barroso plutons emplaced in the NMC (González and Sato, 2000; Sato et
al., 2001a) are the oldest ones (with 417 +6/ -7 Ma, conventional U-Pb
unpublished data) of this goup. These plutons cut previously developed shear
zones and also are cut by other later zones dated by K-Ar method on biotite at
364 ± 7 Ma. For other plutons, Rb-Sr, U-Pb and K-Ar ages are between 408 and
320 Ma (Brogioni, 1987, 1993; Sims et al., 1998; Lema, 1980; Varela et
al., 1994), excluding some dates with very large errors.
Mafic
to ultramafic magmatic rocks
Two
distinctive belts of mafic to ultramafic (meta-) magmatic rocks were identified
within the Sierra de San Luis, one being an intrusive complex and the other
mainly extrusive.
The
La Jovita - Las Aguilas belt (Kilmurray and Villar, 1981;
equivalent to the Las Aguilas Group of Sims et al., 1997) extends along ~
80 km of length and 2 km of width in the central part of the sierra, within the
PMC (Fig. 1). This belt comprises a NNE-SSW trending group of intrusive lenses
and complexes (Peñón Colorado, La Gruta, La Melada, La Bolsa, Los
Manantiales-El Fierro, Las Pircas, Virorco and Las Aguilas, from north to south)
of pyroxenites, peridotites, dunites, gabbros and hornblendites, with a contact
aureole associated with many of them (González Bonorino, 1961; Cucchi, 1964;
Brogioni, 1994, 2001a and b; Brogioni and Ribot, 1994; Malvicini and Brogioni,
1993; Sims et al., 1997). Their margins are extensively recrystallized to
high grade metamorphic assemblages, and share the same foliation of the country
rocks. The less deformed cores of some bodies (Virorco, La Melada and La Gruta)
still preserve the primary cumulate layering (González Bonorino, 1961; Brogioni
y Ribot, 1994; Sims et al., 1997; Brogioni, 2001a). About the timing of
their emplacement, pre- to syn-tectonic relation respect to the main Famatinian
metamorphism and deformation (Sims et al., 1997, 1998; Brogioni y Ribot,
1994; von Gosen y Prozzi, 1998), as well as post-metamorphic emplacement
(Hauzenberger et al., 2001) models were proposed. However, and
Hauzenberger et al. (2001) Brogioni (2001a) coincide that the intrusion
upgraded the country rock metamorphism from amphibolite to granulite facies
conditions. The crystallization age (478 ± 6 Ma, U-Pb SHRIMP, Sims et al.,
1998) is older than the zircon rims and monazite metamorphism ages (460-450 Ma)
obtained from the country rock of PMC by the same authors. This situation might
be related to the long lasting high-grade conditions common in many orogenies
(e.g. Mezger et al., 1991) and the difficulty in dating the peak
metamorphism (Kröner and Williams, 1991). There is a coincidence in the
post-intrusive and post-S2F character
of the ductile shearing produced by La Arenilla mylonite zone. Back arc or
marginal basin settings were proposed for these tholeiitic rocks (Brogioni and
Ribot, 1994; Heuzenberger et al., 2001).
The
San Francisco del Monte de Oro - Villa de la Quebrada belt (González et al., 2002b; Ortiz Suárez, 1999;
Merodio et al., 1978) extends through 45 km in NNE-SSW direction within
the NMC. This belt comprises a group of strongly folded and
boudinaged pod-like mafic to ultramafic bodies. To the west of this main belt,
scattered and minor outcrops are exposed as small lenses and tabular layers. The
bodies consist of amphibolites with relics of komatiites, komatiitic basalts and
high-Fe tholeiite basalts, whose possible crystallization age is as old as early
Mesoproterozoic (c. 1.5 Ga, Sato et al., 2001b). These mafic to
ultramafic volcanic protoliths were affected by a first metamorphism and
deformation event at some pre-Famatinian time, and then by the early Paleozoic
Famatinian events (Sato et al., 2001b; González et al., 2002 b).
Within
the CMC of the eastern part of the Sierra, ultramafic rocks have not been
reported yet. However, tholeiitic basalts extruded in a back-arc setting are
interpreted as protoliths of the interlayered amphibolites. These amphibolites
are distributed in a N-S belt through Sierra del Morro, San Felipe and Villa de
Praga, and many tungsten deposits are genetically related to them (Llambías and
Malvicini, 1982; Delakowitz et al., 1991; Brodtkorb and Brodtkorb, 1999;
Brodtkorb and Ortiz Suárez, 1999).
Discussion
On
the basis of structural and metamorphic characteristics, two groups of
metamorphic complexes are recognized in the Sierra de San Luis: (1) Multiply
deformed and metamorphosed NMC, PMC and CMC, in which older NNW-SSE fabrics are
found only as relicts surviving the penetrative NNE-SSW deformation. (2) Simply
deformed and lower grade metamorphic complexes of SLF and MG, sharing only the
dominant NNE-SSW structures (see synthesis in Fig.2).
Both groups of metamorphic complexes are characterized by a penetrative deformation that produced NNE-SSW trending foliations. Complexes covering a wide range of metamorphic grades and representing different crustal levels share these penetrative structures, and are juxtaposed to the
present
level along ductile shear zones or transitional contacts. Hence, we consider
that these structures were originated by the same compressive stress field of
the Famatinian orogeny. Foliations associated to these structures are the first
one (S1 F) found in the lower grade
complexes (SLF and MG), the second one (S2
F)
for the PMC and CMC, and the fourth one (S4
F)
for the NMC. The high strain compressive regime that accompanied these
penetrative structures is evidenced by isoclinal to tight folding of the
original S0 in the lower grade complexes, and
the tight refolding or reactivation of older foliations in the higher grade
complexes.
Prior
to this main Famatinian orogeny, an older NW-SE deformation event took place, as
recognized locally in the higher grade complexes (NMC, PMC, CMC). An independent
high strain sequence was determined in the NMC, with isoclinal, tight and open
folding associated with the S1pF
to
S3 pF foliations, preceding the
intrusion of large tonalitic to granitic bodies and local migmatization
associated with low-P high-T metamorphism (González et al., 2002a). The
timing of these pre- Famatinian deformations and metamorphism, as well as that
of the previous deposition of the original sequence is not yet well constrained.
It must be at least older than the 490 Ma Río Claro pluton (whose emplacement
cuts the S0 pF to S3
pF of
the NMC), and covers a possible time interval from Meso- to Neoproterozoic and
early Cambrian. This interval is based on Sm-Nd data (Sato et al.,
2001b), SHRIMP U-Pb zircon core data (Sims et al., 1998), a complex U-Pb
conventional zircon data (von Gosen et al., 2002), and the NW-SE
orientation of the old structures, similar to the Pampean deformation in Sierra
de Córdoba.
The
Barrovian-type metamorphism associated with the penetrative deformation and the
successive cooling in the NMC is poorly constrained between 475 and 445 Ma by
U-Pb monazite, Sm-Nd, Ar-Ar and K-Ar methods, whereas at PMC zircon and monazite
U-Pb data indicate the range of 460-450 Ma. The c.480 Ma (Sims et al.,
1998) obtained for the crystallization of a mafic segregation and an orthogneiss
emplaced in the PMC, was considered by these authors as constraining the moment
of synchronous metamorphism and deformation, and could represent earlier stages
of the same metamorphism. For the CMC, only minimum K-Ar ages younger than 455
Ma were obtained. All these scattered data from the higher grade complexes are
consistent for a duration of the high-grade metamorphism associated with the
main deformation between early and late Ordovician (480 to 445 Ma). The U-Pb
crystallization age of 490 ± 15 Ma (von Gosen et al., 2002) from the Río
Claro pre-orogenic granitoid is consistent with this timing.
For
the lower grade complexes (SLF and MG), the age of metamorphism must be
constrained by the ages of the intrusives. U-Pb ages from the pre-orogenic
granitoids are between 507 and 468 Ma (von Gosen et al., 2002; Sims et
al., 1998). Since these country rocks are affected only by one sequence of
regional deformation and metamorphism, this had to occur after the last
intrusion registered at 468 Ma. The fact that the oldest La Escalerilla granite
(507 Ma) is intruding the Las Verbenas tonalite (Sato, 1993) implies that the
Famatinian arc magmatism started at some older time during the Cambrian, with
the possibility of linking to the Pampean events, that are fully developed to
the east at Sierra de Córdoba (Sims et al., 1998; Rapela et al.,
1998). The only reliable Pampean date from Sierra de San Luis is the U-Pb
conventional age of 529 ± 12 Ma obtained from metavolcanic rocks emplaced in
the SLF (Söllner et al., 2000). However, this age is slightly older than
or coetaneous with the peak metamorphism age of around 530-525 Ma of Sierra de Córdoba.
The post-468 Ma time constraint for the main Famatinian deformation in the lower
grade rocks is consistent with the 454 ± 21 Ma Rb-Sr data for the Paso del Rey
- Río de la Carpa syn-orogenic granitoids (Llambías et al., 1991).
However, it is apparent that the duration of metamorphism for the higher grade
complexes (480 to 445 Ma) was longer than metamorphic and deformation processes
that occurred at higher crustal levels.
By
the end of Ordovician, arc magmatism and regional metamorphism ceased, and late
orogenic shear zones started juxtaposing different crustal levels. Post-orogenic
granitoids were then emplaced.
Structural
relationships suggest that shear zones were already active since Ordovician
times (von Gosen and Prozzi, 1998; González and Sato, 2000), being conspicuous
during Devonian. Ar-Ar and K-Ar ages constrain these medium to low grade shear
zones between 414 and 351 Ma. Most of the post-orogenic granitoids cut these
shear belts, but the oldest El Molle and Barroso plutons (417 +6/-7 Ma) are
affected by them. In this western region the shear belts are more abundant
compared to the eastern region.
A
synthesis of the age constraints for the orogenic evolution of Sierra de San
Luis is represented in the Fig. 3, where three stages are recognized. The oldest
pre-Famatinian processes (sedimentation, volcanism, high-strain NW-SE
deformation and associated metamorphism) are still poorly constrained. Up to
now, scarce data support the existence of the Pampean orogeny, comparable to
that of the Sierra de Córdoba. The collision-related Famatinian orogeny started
with the arc magmatism during at least Middle Cambrian, and was active through
the major part of the Ordovician. Penetrative NNE-SSW deformation and
metamorphism occurred at different crustal levels, affecting also the plutons of
the magmatic arc (pre- to syn-orogenic granitoids). This magmatism ceased after
the main deformation, probably due to the end of the east-directed subduction,
as a consequence of terrane accretion. The outlasting compressive effects
producing ductile shearing and exhumation of the metamorphic complexes are
mainly recognized during the Devonian, associated with retrogressive
metamorphism and post-orogenic magmatism. These processes led to the final
uplift of the basement, and can be interpreted as the last events of the so
called Famatinian orogenic cycle (late Cambrian to Devonian), closed with the
Chañica or Precordilleranica phase, as mentioned for surrounding regions.
These
last events are also equivalent to the Achalian orogeny, proposed by Sims et
al. (1998), and were interpreted in relation to accretion of another exotic
terrane, farther to the west, with very low to low grade metamorphism associated
in Western Precordillera, Southern Frontal Cordillera and San Rafael Block
(Ramos and Basei, 1997; Basei et al., 1998; Tickyj et al., 2001).
Regional
correlations: The Sierra de San Luis was dominated by a low- to high-grade
regional metamorphism that affected the arc magmatism within the Famatinian
orogenic axis. The minor calc-alkaline and trondhjemitic intrusives located in
the Sierra de Córdoba (Rapela et al., 1998; Gromet and Simpson, 1999)
suggest that, although not residing in the main Famatinian orogenic belt, this
mountain block was neither remote from the magmatic arc (Gromet and Simpson,
1999). The Ordovician magmatic arc is fully developed to the north of San Luis,
through Sierra de Chepes, Valle Fértil-de la Huerta, Velasco and Famatina
(Pankhurst et al., 1998; 2000; Stuart-Smith et al., 1999; Loske
and Miller, 1996; Saavedra et al., 1992). Further north, coetaneous
plutonism extends up to Puna.
The
regional metamorphism associated with the collisional Famatinian orogeny
affected not only the autochthonous Gondwana margin and the magmatic arc, but
also the allochthonous Cuyania (Precordillera) terrane. The proposed suture zone
position along the present day Bermejo River (Ramos et al., 1998) was
confirmed by the high P/T Ordovician metamorphism reaching 10 to 13 Kb at both
sides of the zone, and the U-Pb SHRIMP zircon core patterns (Baldo et al.,
2001; Casquet et al., 2001, Rapela et al., 2001). Associated with
this highly compressive regime, the deep roots of the magmatic arc are exhumed
in the Sierra de la Huerta, represented by tonalitic magmatism and mafic to
ultramafic intrusives (Castro de Machuca et al., 1996; Vujovich et al.,
1996). The eastwest polarity in the P/T gradient observed at this latitude,
toward lower-P conditions to the east (Baldo et al., 2001) is generally
consistent with the P-T range of the high-grade rocks of the Sierra de San Luis
(mostly 5 – 7.5 Kb, 518° – 770° C). However, just east of the suture zone
at this latitude, the metamorphism associated with polyphase deformation of
Sierra del Gigante (5 – 7 Kb, 400° – 650°C broad estimation, Gardini and
Dalla Salda, 1997) is not comparable with the high P/T conditions of Sierra de
la Huerta. This situation might reflect a progressive decrease of deformation
Figure 3. Compilation of selected isotopic data, constraining three stages in the basement evolution of Sierra de San Luis. Data source: Nogolí Metmorphic Complex: Ortiz Suárez (1999), Sato et al.(2001), González et al.(2002a), and our unpublished data. Pringles Metamorphic Complex: Sims et al.(1997, 1998), Ortiz Suárez (1999). San Luis Formation and equivalents: Sims et al. (1997, 1998), Söllner et al.(2000). Magmatic rocks: Lema (1980), López de Luchi (1987), Brogioni (1987, 1993), Varela et al.(1994); Llambías et al.(1991;1998), Stuart-Smith et al.(1999), Ortiz Suárez and Ulacco (1999); Sato et al.(1999, 2001a), López de Luchi and Cerredo (2001), von Gosen et al. (2002), and our unpublished data. Time scale after Remane (2000).
and
metamorphism toward the south, as it is clearer at latitudes of the Chadileuvú
Block. Here, the undeformed granitoids (U-Pb 503 ± 54 (503±54) and 431 ± 12
(431±12) Ma), and the dates of the phyllites (Ar-Ar 523 ± 3 Ma), gneisses
(Ar-Ar 461 ± 2 Ma) and amphibolites (Kr-Ar 467 ± 13 Ma) (Tickyj et al.,
1999; Tickyj and Llambías, tihs volume), only weakly support the existence of
Ordovician regional metamorphism, and might rather suggest the existence of a
Pampean metamorphism (Linares et al., 1980). At this latitude, neither
the Las Matras basement (Sato et al., 2000) nor the carbonate cover
(Melchor et al., 1999) of the Cuyania terrane show evidences of a
regional Ordovician metamorphism, suggesting a more passive terrane accretion.
This N-S heterogeneity in the compressive regime of the collisional orogen is
possibly related to a different accretion geometry, such as irregular terrane
shape or different angle of incidence. Only at Sierras Pampeanas, where the more
severe compression developed a thickened crust, also favoured the emplacement of
postorogenic, very high-K magmatism of mainly Devonian age. Farther south,
although the existence of Ordovician metamorphism at Northpatagonian Massif was
shown by Pankhurst et al. (2001), up to now the Cuyania terrane is not
documented at these latitudes.
The
compressive regime that characterizes the Ordovician collision is also noted in
the region of Sierra de Umango, where the Famatinian tectonism possibly
juxtaposed sheets of allochtonous and autochthonous terranes together, and this
situation makes difficult the distinction of the Grenvillian, Pampean and
Famatinian metamorphism and magmatism (Varela et al., 2000, and in
prep.). These three cycles are also equivalent to those recognized at the area
of Fiambalá (Grissom et al., 1998). East of Umango, high grade
metamorphic rocks are exposed in the western and southern part of the Sierra de
Famatina (Rossi de Toselli, 1996; Saavedra et al., 1998; Saal, 1993),
reaching up to 6 Kb and 650°C. To the east, the country rocks of the arc
magmatism are of higher crustal levels (Pampean to Famatinian rocks), only
reaching higher grades the Famatinian regional ductile shear zones (e.g. Durand
and López, 1996; Rapela et al., 2001; Lopez and Toselli, 2002; Báez et
al., 2002). Details on the Famatinian metamorphism of the Northwestern
Argentina can be seen in Rossi (this volume).
In
synthesis, the Ordovician of the Sierra de San Luis is part of the Famatinian
collisional orogen that involved the southwestern Gondwana margin and the
accreted Cuyania terrane. Variations in deformation degree and metamorphic grade
are moticeable along and across the orogen. Along the Gondwana margin, the
Famatinian orogen overprinted the western part of the Pampean orogen, and only
in few localities the recognition of Pampean rocks is clear. Rocks formed
undoubtedly during the Pampean orogeny, and less affected by the Ordovician
collisional effects, are exposed in an eastern belt parallel to the Famatinian
orogen.
References
Astini,
R.A., 1998. Stratigraphical
evidence supporting the rifting, drifting and collision of the Laurentian
Precordillera terrane of western Argentina. In: Pankhurst, R. and Rapela, C.
(eds). The Proto-Andean Margin of Gondwana. Geological Society of London,
Special Publications, 142: 11-33.
Báez,
M.A., Rossi de Toselli, J.N., Sardi, F., 2002. Consideraciones preliminares
sobre los granitoides del norte de la Sierra de Velasco, La Rioja, Argentina. XV
Congreso Geológico Argentino, Actas, Artículo 175, 6pp, Calafate.
Baldo,
E.G., Casquet. C., Rapela, C.W., Pankhurst, R.J., Galindo, C., Fanning, C.M.,
Saavedra, J., 2001. Ordovician
metamorphism at the southwestern margin of Gondwana: P-T conditions and U-Pb
SHRIMP ages from Loma de las Chacras, Sierras Pampeanas. III South American
Symposium on Isotope Geology, Extended Abstract Volume (CD), 544-547, Sociedad
Geológica de Chile, Santiago, Chile.
Basei,
M., Ramos, V., Vujovich, G., Poma, S., 1998. El basamento metamórfico de la
Cordillera Frontal de Mendoza: Nuevos datos geocronológicos e isotópicos. X
Congreso Latinoamericano de Geología y VI Congreso Nacional de Geología Económica,
Actas II:412-417, Buenos Aires.
Brodtkorb,
M. K. de, Ortiz Suárez, A., 1999. Ambiente geológico de formación de los
yacimientos de wolframio de San Luis. In: Recursos Minerales de la República
Argentina (Ed. O. Zappettini), Instituto de Geología y Recursos Minerales
SEGEMAR, Anales 35, p. 227-231, Buenos Aires.
Brodtkorb,
M. K. de, Brodtkorb., A., 1999. Yacimientos de scheelita asociados a anfibolitas
y rocas calcosilicáticas, San Luis. In: Recursos Minerales de la República
Argentina (Ed. O. Zappettini), Instituto de Geología y Recursos Minerales
SEGEMAR, Anales 35, p. 257-269, Buenos Aires.
Brodtkorb,
M., Pezzutti, N., 1991. Yacimientos
scheelíticos en rocas calcosilicáticas asociados a anfibolitas, provincias de
San Luis y Córdoba. In: Brodtkorb, M.K. de (ed.) Geología
de yacimientos de wolframio de las provincias de San Luis y Córdoba, Argentina.
Instituto de Recursos Minerales de La Plata, Publicación N° 1,
p.169-184, La Plata.
Brodtkorb,
M., Pezzutti, N., Dalla Salda, L.H., 1984. Presencia de vulcanismo ácido en el
Precámbrico de San Luis. 9° Congreso Geológico Argentino, 2: 181-190.
San Carlos de Bariloche.
Brogioni,
N., 1987. El Batolito de Las Chacras-Piedras Coloradas, provincia de San Luis.
Geología y edad. X Congreso Geológico Argentino, Actas 4:115-118, Tucumán.
Brogioni,
N., 1993. El batolito de Chacras-Piedras Coloradas, provincia de San Luis.
Geocronología Rb/Sr y ambiente tectónico. XII Congreso Geológico Argentino
y Segundo Congreso de Exploración de Hidrocarburos, Actas IV:54-60,
Mendoza.
Brogioni,
N., 1994. Petrología de la faja de rocas máficas y ultramáficas de la Sierra
de San Luis, Argentina. 7° Congreso Geológico Chileno, 2: 967-971.
Concepción.
Brogioni,
N., 2001a. Geología de los cuerpos Virorco y El Fierro, faja máfica-ultramáfica
del borde oriental de la sierra de San Luis. Revista de la Asociación Geológica
Argentina, 56:281-292.
Brogioni,
N., 2001b. Petrología de los cuerpos Virorco y El Fierro, faja máfica-ultramáfica
del borde oriental de la sierra de San Luis. Revista de la Asociación Geológica
Argentina, 56:535-547.
Brogioni,
N., Ribot, A., 1994. Petrología de los cuerpos La Melada y La Gruta, faja máfica-ultramáfica
del borde oriental de la Sierra de San Luis. Revista de la Asociación Geológica
Argentina, 49: 269-283.
Brogioni,
N., Parrini, P., Pecchioni, E., 1994. Magmatismo pre y sin-colisional en el cordón
de El Realito, Sierra de san Luis, Argentina. 7° Congreso Geológico Chileno,
Actas 2: 962-965. Concepción.
Caminos,
R., 1979. Sierras Pampeanas Noroccidentales de Salta, Tucumán, La Rioja,
Catamarca y San Juan. In:
Turner, J. (Ed.). Segundo
Simposio de Geología Regional Argentina. Academia Nacional de Ciencias de Córdoba,
Volumen 1:
225-291. Córdoba.
Carugno
Durán, A., Ortiz Suárez, A., Prozzi, C., 1992. Deformación en granitoide del
Río V, provincia de San Luis. VIII Reunión de Microtectónica,
Actas:83-86, San Carlos de Bariloche.
Casquet,
C., Baldo, E., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning., C.M.,
Saavedra, J., 2001. Involvment
of the Argentine Precordillera terrane in the Famatinian mobile belt: U-Pb
SHRIMP and metamorphic evidence from the Sierra de Pie de Palo. Geology
29(8):703-706.
Castro
de Machuca, B., Pontoriero, S., Llambías, E.J., 1996. Evidencias petrológicas
y geoquímicas de la evolución de un arco magmático en la sierra de La Huerta,
provincia de San Juan. XIII Congreso Geológico Argentino y III Congreso de
Exploración de Hidrocarburos, Actas III:517, Buenos Aires.
Criado
Roqué, P., Mombrú, C., Ramos, V., 1981. Estructura e interpretación tectónica.
En: Yrigoyen, M. (Ed.). Geología y Recursos Minerales de la Provincia de San
Luis. Relatorio 8° Congreso Geológico Argentino: 155-192. San Luis.
Cucchi,
R.J., 1964. Análisis estructural de cuarcitas y granulitas bandeadas miloníticas
de la Sierra de San Luis. Revista de la Asociación Geológica Argentina, 19:
135-150.
Dalla
Salda, L., 1987. Basement
tectonics of Southern Pampean Ranges, Argentina. Tectonics, 6 (3): 249-260.
Dalla
Salda, L.H., Cingolani, C.A., Varela, R., 1992. Early Paleozoic orogenic belt of
the Andes in southeastern South America: result of Laurentia-Gondwana collision?
Geology 20:617-620.
Dalla
Salda, L.H., López de Luchi, M.G., Cingolani, C.A., Varela, R., 1998. Laurentia-Gondwana
collision: the origin of the Famatinian-Appalachian orogenic belt (a review).
In: Pankhurst, R. and Rapela, C. (eds). The Proto- Andean Margin of Gondwana.
Geological Society of London, Special Publications, 142:219-234.
Delakowitz,
B., Höll, R., Hack., M., Brodtkorb, M.K. de, Stärk, H., 1991. Geological and
geochemical studies of the Sierra del Morro-Oeste (San Luis Province,
Argentina): meta-sediments and meta-volcanics from a probable back-arc setting. Journal
of South American Earth Sciences, 4: 189-200.
Durand,
F., López, J.P., 1996. La deformación dúctil en el flanco oriental del
Sistema de Famatina. In Geología del Sistema de Famatina (Aceñolaza, F.G.,
Miller, H.. Toselli,
A., eds.), Münchner Geologische Hefte 19(A):311-323, München.
Fernández,
R., Pezzutti, N., Brodtkorb, M. K. de, 1991. Geología, petrografía y
yacimientos entre Pampa de Tamboreo - Paso del Rey - Santo Domingo, Provincia de
San Luis. In: M.K. Brodtkorb (Ed.): Geología de los Yacimientos de Wolframio de
las Provinicas de San Luis y Córdoba. Publicación del Instituto de Recursos
Minerales (UNLP), 1: 153-170. La Plata.
Foster,
G., Kinny, P., Vance, D., Prince, C., Harris, N., 2000. The significance of
monazite U-Th-Pb age data in metamorphic assemplages; a combined study of
monazite and garnet chronometry. Earth and Planetary Science Letters 181:327-340.
Gardini,
C., Dalla Salda, L.H., 1997. El complejo metamórfico de la sierra de El Gigante, San Luis,
Argentina. Revista de la Asociación Geológica Argentina 52:132-142.
González
Bonorino, F., 1961. Petrología de algunos cuerpos básicos de San Luis y las
granulitas asociadas. Revista de la Asociación Geológica Argentina, 19 (3):
135-150.
González,
P.D., 2000a. Estructura, metamorfismo y petrología del basamento ígneo - metamórfico
de la sierra de San Luis, entre Nogolí y Gasparillo. Informe semestral Beca
FOMEC (Facultad de Ciencias Naturales y Museo - UNLP): 42 p. Inédito, La
Plata.
González,
P.D., 2000b. Banded Iron Formation del basamento Pre-Famatiniano de San Luis:
primer registro en Argentina. In: Schalamuk, I., M. K. de Brodtkorb y R.
Etcheverry (Eds.). Mineralogía y Metalogenia 2000. INREMI, Publicación N°
6: 191-198. La Plata, Buenos Aires.
González,
P.D., Llambías, E.J., 1998. Estructura interna de las metamorfitas
pre-Famatinianas y su relación con la deformación del Paleozoico inferior en
el área de Gasparillo, San Luis, Argentina. 10° Congreso Latinoamericano de
Geología y 6° Congreso Nacional de Geología Económica, 2: 421-426.
Buenos Aires.
González,
P.D., Sato, A.M., 2000. Los plutones monzoníticos cizallados El Molle y
Barroso: dos nuevos intrusivos pos-orogénicos en el oeste de las sierras de San
Luis, Argentina. 9° Congreso Geológico Chileno, 1 (sesión temática 4):
621-625. Puerto Varas.
González,
P.D., Sato, A.M., Basei, M.A.S., Vlach, S.R.F., Llambías, E.J., 2002a. Structure,
metamorphism and age of the Pampean-Famatinian Orogenies in the Western Sierra
de San Luis. XV
Congreso Geológico Argentino, Actas, Artículo 154, 6pp, Calafate.
González,
P.D., Sato, A.M., Llambías, E.J., 2002b. The komatiites and associated
mafic to ultramafic metavolcanic rocks of western Sierra de San Luis. XV
Congreso Geológico Argentino, Actas,
Artículo 178, 4pp, Calafate.
Grissom,
G.C., DeBari, S.M., Snee, L.W., 1998. Geology of the Sierra de Fiambalá,
northwest Argentina: implications for Early Palaeozoic Andean tectonics. In:
Pankhurst, R. y Rapela, C. (eds). The Proto-Andean Margin of Gondwana.
Geological Society of London, Special Publications, 142:297-323.
Gromet,
L.P., Simpson, C., 1999. Age of the Paso del Carmen pluton and implications for
the duration of the Pampean Orogeny, Sierras de Córdoba. XIV
Congreso Geológico Argentino, Actas I:149-151,
Salta.
Hauzenberger,
C., Mogessie, A., Hoinkes, G., Felfernig, A., Bjerg, E., Kostadinoff, J.,
Delpino, S., Dimieri, L., 2001. Metamorphic evolution of the Sierra de San Luis,
Argentina: granulite facies metamorphism related to mafic intrusions. Mineralogy
and Petrology, 71: 95-126.
Hünicken,
M., Azcuy, C. Pensa, M., 1981. Sedimentitas Paleozoicas. En: Geología y
Recursos Minerales de la Provincia de San Luis (M. Yrigoyen, Ed.). Relatorio
8° Congreso Geológico Argentino: 55-77. San Luis.
Kilmurray,
J., 1981. Petrología metamórfica y aspectos estructurales de las formaciones
comprendidas entre La Toma y el Río Quinto. Sierras de San Luis. Revista de
la Asociación Argentina de Mineralogía, Petrología y Sedimentología, 12 (1-2):
31-45.
Kilmurray,
J., 1982. Estructura y petrología de la región de Trapiche, Dique La Florida,
Provincia de San Luis, Argentina. 5° Congreso Latinoamericano de Geología, 2:
239-249. Buenos Aires.
Kilmurray,
J., Dalla Salda, L.H., 1977. Caracteres estructurales y petrológicos de la región
central y sur de la Sierra de San Luis. Obra del Centenario del Museo de La
Plata, Sección Geología: 167-178. La Plata.
Kilmurray,
J., Villar, L., 1981. El basamento de la Sierra de San Luis y su petrología.
En: Geología y Recursos Minerales de la Provincia de San Luis (M. Yrigoyen,
Ed.). Relatorio 8° Congreso Geológico Argentino: 33-54. San Luis.
Kröner,
A., Williams, I.S., 1993. Age of metamorphism in the high-grade rocks of Sri
Lanka. The Journal of Geology 101:513-521.
Lema,
H., 1980. Geología de los afloramientos del arroyo Peñas Blancas, sierra de
Yulto, provincia de San Luis. Revista de la Asociación Geológica Argentina 35:147-150.
Llambías,
E.J., Malvicini, L., 1982. Geología y génesis de los yacimientos de tungsteno
de las Sierras del Morro, Los Morrillos y Yulto, provincia de San Luis. Asociación
Geológica Argentina, Revista, 37:100-143.
Llambías,
E.J., Cingolani, C.A., Varela, R., Prozzi, C., Ortiz Suárez, A., Caminos, R.,
Toselli, A., Saavedra, J., 1991. Leucogranodioritas sin-cinemáticas ordovícicas
en la Sierra de San Luis. 6° Congreso Geológico Chileno, Resúmenes
Expandidos, 187-191, Viña del Mar.
Llambías,
E.J., Sato, A.M., Prozzi, C., Sánchez, V., 1996a. Los pendants de gneises en el
Plutón Gasparillo: evidencia de un metamorfismo pre-Famatiniano en las Sierras
de San Luis. XIII Congreso Geológico Argentino y 3° Congreso de Exploración
de Hidrocarburos, 5: 369-376. Buenos Aires.
Llambías,
E.J., Quenardelle, S., Ortiz Suárez, A., Prozzi, C., 1996b. Granitoides
sincinemáticos de la Sierra Central de San Luis. XIII Congreso Geológico
Argentino y 3° Congreso de Exploración de Hidrocarburos, 3: 487-496.
Buenos Aires.
Llambías,
E.J., Sato, A.M., Ortiz Suárez, A., Prozzi, C., 1998. The granitoids of the Sierra de
San Luis. In: Pankhurst, R.
y Rapela, C. (eds). The Proto-Andean Margin of
Gondwana. Geological Society of London, Special Publications,
142: 325- 341.
Llaneza,
G., Ortiz Suárez, A., 2000. Geología y petrografía del granito El Peñón
(Provincia de San Luis) y su relación con el metamorfismo y la deformación. 9°
Congreso Geológico Chileno, Actas 1: 639-643. Puerto Varas.
López,
J.P., Toselli, A.J., 2002. Zonas de cizalla frágil y dúctil de edad Oreovícica
superior – Devónica sobre la faja milonític Tipa, en el flanco noroeste de
la Sierra de Velasco, La Rioja, Argentina. XV Congreso Geológico Argentino,
Actas, Artículo 65, 4pp, Calafate.
López
de Luchi, M., 1987. Caracterización geológica y geoquímica del plutón La
Tapera y el Batolito de Renca, provincia de San Luis. X Congreso Geológico
Argentino, Actas 4: 84-87. San Miguel de Tucumán.
López
de Luchi, M., Cerredo, M.E., 2001. Submagmatic and solid-state microstructures in La
Tapera pluton. San
Luis. Argentina. Asociación Geológica Argentina, Serie D: Publicación
Especial N° 5: 121-125.
López
de Luchi, M.G., Hoffmann, A., Siegesmund, S., Wemmer, K., Steenken, A., 2002. Temporal
constraints on the polyphase evolution of the Sierra de San Luis. Preliminary
report based on biotite and muscovite cooling ages. XV
Congreso Geológico Argentino, Actas,
Artículo 361, 7pp, Calafate.
Loske,
W., Miller, H., 1996. Sistemática
U-Pb de circones del granito de Ñuñorco-Sañogasta. In Geología del Sistema
de Famatina (Aceñolaza, F.G., Miller, H.. Toselli,
A., eds.), Münchner Geologische Hefte 19(A):221-227, München.
Malvicini,
L., Brogioni, N., 1993. Petrología y génesis del yacimiento de sulfuros de Ni,
Cu, y platinoideos «Las Aguilas Este», Provincia de San Luis. Revista de la
Asociación Geológica Argentina, 48 (1): 3-20.
Melchor,
R.N., Tickyj, H., Dimieri, L.V., 1999. Estratigrafía, sedimentología y
estructura de las calizas de la Formación San Jorge (Cámbrico-Ordovícico),
oeste de La Pampa. XIV Congreso Geológico Argentino, Actas 1:113- 127,
Salta.
Merodio,
J., Dalla Salda, L.H., Rapela, C.W., 1978. Estudio petrológico y geoquímico
preliminar del cuerpo básico de la región de San Francisco del Monte de Oro,
Provincia de San Luis. Revista de la Asociación Geológica Argentina, 33
(2): 122-138.
Mezger,
K., Krogstad, E.J., 1997. Interpretation
of discordant U-Pb zircon ages: An evaluation. Journal of Metmorphic Geology 15:127-140.
Mezger,
K., Rawnsley, C.M., Bohlen, S.R., Hanson, G.N., 1991. U-Pb garnet, sphene,
monazite, and rutile ages: implications for the duration of high-grade
metamorphism and cooling histories, Adirondack mts., New York. The Journal of
Geology 99:415-428.
Ortiz
Suárez, A., 1988. El basamento de Las Aguadas, provincia de San Luis. Revista
de la Asociación Argentina de Mineralogía, Petrología y Sedimentología,
19 (1-4): 13-24.
Ortiz
Suárez, A., 1996. Geología y petrografía de los intrusivos de Las Aguadas,
Provincia de San Luis. Revista de la Asociación Geológica Argentina, 51:
321-330.
Ortiz
Suárez, A., 1999. Geología y petrología del área de San Francisco del
Monte de Oro, San Luis. Tesis Doctoral, Facultad de Ciencias Físico - Matemáticas
y Naturales. Universidad Nacional de San Luis.259pp, inédito, san Luis.
Ortiz
Suárez, A., Sosa, G., 1991. Relaciones genéticas entre las pegmatitas
portadoras de estaño y metamorfitas asociadas en la zona de La Carolina - San
Francisco del Monte de Oro, Provincia de San Luis. Revista de la Asociación
Geológica Argentina, 46: 339-343.
Ortiz
Suárez, A., Ulacco, H., 1999. Edad del Complejo Intrusivo de Rodeo Viejo,
provincia de San Luis. XIV Congreso Geológico Argentino, Actas 1:105.
Salta.
Ortiz
Suárez, A., Prozzi, C., Llambías, E.J., 1992. Geología de la parte sur de la
Sierra de San Luis y granitoides asociados, Argentina. Estudios Geológicos, 48:269-277.
Madrid.
Pankhurst,
R.J., Rapela, C.W., Saavedra, J., Baldo, E., Dahlquist, J., Pascua, I., Fanning,
C.M., 1998. The
Famatinian magmatic arc in the central Sierras Pampeanas: an Early to
Mid-Ordovician continentatl arc on the Gondwana margin. In: Pankhurst, R. and
Rapela, C. (eds). The Proto-Andean Margin of Gondwana. Geological Society of
London, Special Publications, 142:343-367.
Pankhurst,
R.J., Rapela, C.W., Fanning, C.M., 2000. Age and origin of coeval TTG, I- and
S-type granites in the Famatinian belt of NW Argentina. Transactions of the
Royal Society of Edinburgh: Earth Sicences, 91:151-168.
Pankhurst,
R.J., Rapela, C.W., Fanning, C.M., 2001. The Mina Gonzalito Gneiss: Early
Ordovician metamorphism in Northern Patagonia. III South American Symposium
on Isotope Geology, Extended Abstract Volume (CD), 604-607, Sociedad Geológica
de Chile, Santiago, Chile.
Prozzi,
C., 1990. Consideraciones acerca del Basamento de San Luis. Actas 11°
Congreso Geológico Argentino, 1: 452- 455. San Juan.
Prozzi,
C., Ramos, G., 1988. La Formación San Luis. 1° Jornadas de Trabajo de las
Sierras Pampeanas (San Luis). Abstracts, página 1.
Ramos,
V.A. Basei, M.A.S., 1997. The
basement of Chilenia: an exotic continental terrane to Gondwana during the Early
Paleozoic.Terrane Dynamics – 97, Conference Abstracts, 140-143,
Christchurch.
Ramos,
V.A., Dallmeyer, R.D., Vujovich, G., 1998. Time constraints on the Early
Palaeozoic docking of the Precordillera, central Argentina. In: Pankhurst, R. y
Rapela, C. (eds). The Proto-Andean Margin of Gondwana. Geological Society of
London, Special Publications, 142:143-158.
Rapela,
C.W., R.J. Pankhurst, Casquet, C., Baldo, E., Saavedra, J. Galindo, C., Fanning,
C.M., 1998. The Pampean Orogeny of the osuthern proto-Andes: Cambarian
continental collision in the Sierras de Córdoba. In: Pankhurst, R. and Rapela,
C. (eds). The Proto-Andean Margin of Gondwana. Geological Society of London,
Special Publications, 142:181-217.
Rapela,
C.W., Pankhurst, R.J., Baldo, E., Casquet, C., Galindo, C., Fanning, C.M.,
Saavedra, J., 2001. Ordovician metamorphism
in the Sierras Pampeanas: New U-Pb SHRIMP ages in central-east Valle Fértil and
the Velasco batholith. III South American Symposium on Isotope Geology, Extended
Abstract Volume (CD), 616-619, Sociedad Geológica de Chile, Santiago, Chile.
Remane,
J., 2000. International Stratigraphic Chart. Unesco, IUGS.
Rossi,
J.N. Ordovician metamorphism of the Pampean Ranges, Famatina System and Eastern
Cordillera, Northwestern Argentina. In: Aspects on the Ordovician System of
Argentina (Aceñolaza, F.G.., ed.), INSUGEO, Serio Correlación Geológica, 16,
this volume.
Rossi
de Toselli, J.N.., 1996. Geología del Sistema Famatina (4). El Basamento metamórfico
del Sistema de Famatina. In: Geología del Sistema de Famatina (Aceñolaza,
F.G.., Miller, H. Toselli, A., eds.), Münchner Geologische Hefte 19(A):23-30,
München.
Saal,
A.E., 1993. El
basamento cristalino de la Sierra de Paganzo, Provincia de La Rioja, Argentina. Tesis
Doctoral, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad
Nacional de Córdoba, 2 vol., inédito, Córdoba.
Saavedra,
J., Pellitero, E., Rossi, J.N., Toselli, A.J., 1992. Magmatic evolution of the
Cerro Toro granite, a complex Ordovician pluton of northwestern Argentina. Journal
of South American Earth Sciences 5(1):21-32.
Sato,
A.M., 1993. Deformación
de la tonalita pre-cinemática de Las Verbenas, Sierra de San Luis, Argentina. Primer
Simposio Internacional del Neoproterozoico - Cámbrico de la cuenca del Plata,
1: 1-5. La Paloma, Uruguay.
Sato,
A.M., Llambías, E.J., 1994. Granitoides pre-cinemáticos del sur de la Sierra
de San Luis, Argentina. 7° Congreso Geológico Chileno, 2: 1200-1204.
Concepción.
Sato,
A.M., Ortiz Suárez, A. Llambías, E.J., Cavarozzi, C., Sánchez, V. Varela, R.,
Prozzi, C., 1996. Los plutones Pre- Oclóyicos del Sur de la Sierra de San Luis:
Arco Magmático al inicio del Ciclo Famatiniano. XIII Congreso Geológico
Argentino y 3° Congreso de Exploración de Hidrocarburos, Actas 5:259-272.
Buenos Aires.
Sato,
A.M., Varela, R., Llambías, E.J., 1999. Rb-Sr whole rock and mineral data from Bemberg and La
Escalerilla Plutons,
Sierra de San Luis, Argentina. II South American Symposium
on Isotope Geology, Actas: 127-131. Carlos
Paz.
Sato,
A.M., Tickyj, H., Llambías, E.J., Sato, K., 2000. The Las Matras
tonalitic-trondhjemitic pluton, central Argentina: Grenvillian-age constraints,
geochemical characteristics, and reigonal implications. Journal of South
American Earth Sciences 13:587-610.
Sato,
A.M., González, P.D., Petronilho, L.A.,. Llambías, E.J., Varela, R., Basei, M.A.S., 2001a. Sm-Nd,
Rb-Sr and K-Ar age constraints of the El Molle and Barroso plutons, western
Sierra de San Luis, Argentina. III South American Symposium on Isotope
Geology, Extended Abstract Volume (CD), 241-244, Sociedad Geológica de
Chile, Santiago, Chile.
Sato,
A.M., González, P.D., Sato, K., 2001b. First indication of Mesoproterozoic age
from the western basement of Sierra de San Luis, Argentina. III South
American Symposium on Isotope Geology, Extended Abstract Volume (CD),
620-623, Sociedad Geológica de Chile, Santiago, Chile
Sims,
J., P. Stuart-Smith, P. Lyons Skirrow, R.,1997. Report on 1:250.000 Scale
Geological and Metallogenic Maps. Sierras de San Luis and Comechingones. Provinces
of San Luis and Córdoba. Geoscientific mapping of the Sierras Pampeanas Argentine-
Australian cooperative Project. Australian Geological Survey Organisation.
Unpublished Report. SEGEMAR,
Buenos Aires.
Sims,
J., Ireland, T., Camacho, A., Lyons, P., Pieters, P., Skirrow, R., Stuart Smith,
P., Miró, R., 1998. U-Pb, Th-Pb and Ar-Ar geocronology from the southern
Sierras Pampeanas, Argentina: implications for the Paleozoic tectonic evolution
of the western Gondwana margin. . In: Pankhurst, R. and Rapela, C. (eds). The
Proto-Andean Margin of Gondwana. Geological Society of London, Special
Publications, 142: 259-281.
Söllner,
F., Brodtkorb, M., Miller, H., Pezzutti, N., Fernández, R., 2000. U-Pb zircon
ages of metavolcanic rocks from the Sierra de San Luis, Argentina. Revista de la Asociación
Geológica Argentina, 55:15-22.
Stuart-Smith,
P.G., Camacho, A., Sims, J.P., Skirrow, R.G., Lyons, P., Pieters, P.E., Black,
L., Miró, R., 1999. Uraniumlead dating of felsic magmatic cycles in the
southern Sierras pampeanas, Argentina: Implications for the tectonic development
of the proto-Andean Gondwana margin. In: Ramos, V.A. and Keppie, J.D. (eds.),
Laurentia-Gondwana before Pangea: Boulder, Colorado, Geologicas Society of
America Special Paper 336, 87-114. Tickyj, H., Llambías, E.J. Ordovician
cristalline basemen of south-eastern La Pampa province. In: Aspects on the
Ordovician System of Argentina (Aceñolaza F.G. ed.), INSUGEO, Serie
Correlación Geológica, 16, this volume.
Tickyj,
H., Llambías, E.J., Sato, A.M., 1999. El basamento cristalino de la región sur-oriental de la
provincia de La Pampa: Extensión austral del Orógeno Famatiniano de Sierras
Pampeanas. XIV Congreso Geológico Argentino, Actas I:160-163, Salta.
Tickyj,
H., Cingolani, C., Varela, R., Chemale Jr., F., 2001. Rb-Sr ages from La
Horqueta Formation, San Rafael Block, Argentina. III South American Symposium
on Isotope Geology, Extended Abstract Volume (CD), 628-631, Sociedad Geológica
de Chile, Santiago, Chile.
Ulacco,
J.H., 1997. Metalogénesis de las vetas de Plomo-Cinc del distrito Las
Aguadas, provincia de San Luis. Tesis Doctoral, Facultad de Ciencias Físico
Matemáticas y Naturales, Universidad Nacional de San Luis, 313pp, inédito. San
Luis.
Varela,
R., Llambías, E.J., Cingolani, C.A, Sato, A.M., 1994. Datación de algunos
granitoides de la Sierra de San Luis (Argentina) e interpretación evolutiva. 7°
Congreso Geológico Chileno, Actas 2: 1249-1253. Concepción.
Varela,
R., Roverano, D., Sato, A.M., 2000. Granito El Peñón, sierra de Umango:
descripción, edad Rb/Sr e implicancias geotectónicas. Revista de la
Asociación Geológica Argentina, 55:407-413. von Gosen, W., 1998a. The Phyllite and Micaschist Group
with associated intrusions in the Sierra de San Luis (Sierras
Pampeanas/Argentina)-structural and metamorphic relations. Journal of South
American Earth Sciences, 11:79-109.
von
Gosen, W., 1998b. Transpressive deformation in the southwestern part of the
Sierra de San Luis (Sierras Pampeanas, Argentina). Journal of South American
Earth Sciences, 11:233-264. von Gosen, W., Prozzi, C., 1996. Geology,
structure and metamorphism in the area south of La Carolina (Sierras de San
Luis, Argentina). 13°
Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos,
2:301-314. Buenos Aires. von Gosen, W., Prozzi, C., 1998. Structural evolution of the Sierra
de San Luis (Eastern Sierras Pampeanas, Argentina): implications for the
Proto-Andean Margin of Gondwana. In: Pankhurst, R. and Rapela, C. (eds). The
Proto-Andean Margin of Gondwana. Geological Society of London, Special
Publication, 142: 235-258. von Gosen, W., Loske, W., Prozzi, C., 2002. New
isotopic dating of intrusive rocks in the Sierra de San Luis (Argentina):
implications for the geodynamic history of the Eastern Sierras Pampeanas. Journal
of South American Earth Sciences 15:237-250. Vujovich, G., Godeas, M.C., Marín,
G., Pezzutti, N., 1996. El complejo magmático de la Sierra de la Huerta, provincia de San
Juan. XIII Congreso Geológico Argentino y 3° Congreso de Exploración de
Hidrocarburos, Actas 3:465-475, Buenos Aires.
Recibido:
2 de Octubre de
2002
Aceptado: 13 de Noviembre de 2002